k-MS: A novel clustering algorithm based on morphological reconstruction
- URL: http://arxiv.org/abs/2208.14390v1
- Date: Tue, 30 Aug 2022 16:55:21 GMT
- Title: k-MS: A novel clustering algorithm based on morphological reconstruction
- Authors: \'E. O. Rodrigues and L. Torok and P. Liatsis and J. Viterbo and A.
Conci
- Abstract summary: k-MS is faster than the CPU-parallel k-Means in worst case scenarios.
It is also faster than similar clusterization methods that are sensitive to density and shapes such as Mitosis and TRICLUST.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work proposes a clusterization algorithm called k-Morphological Sets
(k-MS), based on morphological reconstruction and heuristics. k-MS is faster
than the CPU-parallel k-Means in worst case scenarios and produces enhanced
visualizations of the dataset as well as very distinct clusterizations. It is
also faster than similar clusterization methods that are sensitive to density
and shapes such as Mitosis and TRICLUST. In addition, k-MS is deterministic and
has an intrinsic sense of maximal clusters that can be created for a given
input sample and input parameters, differing from k-Means and other
clusterization algorithms. In other words, given a constant k, a structuring
element and a dataset, k-MS produces k or less clusters without using random/
pseudo-random functions. Finally, the proposed algorithm also provides a
straightforward means for removing noise from images or datasets in general.
Related papers
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means one-step dimensionality reduction clustering method has made some progress in addressing the curse of dimensionality in clustering tasks.
We propose a unified framework that integrates manifold learning with K-means, resulting in the self-supervised graph embedding framework.
arXiv Detail & Related papers (2024-09-24T08:59:51Z) - MOKD: Cross-domain Finetuning for Few-shot Classification via Maximizing Optimized Kernel Dependence [97.93517982908007]
In cross-domain few-shot classification, NCC aims to learn representations to construct a metric space where few-shot classification can be performed.
In this paper, we find that there exist high similarities between NCC-learned representations of two samples from different classes.
We propose a bi-level optimization framework, emphmaximizing optimized kernel dependence (MOKD) to learn a set of class-specific representations that match the cluster structures indicated by labeled data.
arXiv Detail & Related papers (2024-05-29T05:59:52Z) - Fuzzy K-Means Clustering without Cluster Centroids [21.256564324236333]
Fuzzy K-Means clustering is a critical technique in unsupervised data analysis.
This paper proposes a novel Fuzzy textitK-Means clustering algorithm that entirely eliminates the reliance on cluster centroids.
arXiv Detail & Related papers (2024-04-07T12:25:03Z) - Superclustering by finding statistically significant separable groups of
optimal gaussian clusters [0.0]
The paper presents the algorithm for clustering a dataset by grouping the optimal, from the point of view of the BIC criterion.
An essential advantage of the algorithm is its ability to predict correct supercluster for new data based on already trained clusterer.
arXiv Detail & Related papers (2023-09-05T23:49:46Z) - Instance-Optimal Cluster Recovery in the Labeled Stochastic Block Model [79.46465138631592]
We devise an efficient algorithm that recovers clusters using the observed labels.
We present Instance-Adaptive Clustering (IAC), the first algorithm whose performance matches these lower bounds both in expectation and with high probability.
arXiv Detail & Related papers (2023-06-18T08:46:06Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
We present a new clustering algorithm which directly detects clusters of data without mean estimation.
Specifically, we construct distance matrix between data points by Butterworth filter.
To well exploit the complementary information embedded in different views, we leverage the tensor Schatten p-norm regularization.
arXiv Detail & Related papers (2023-05-12T03:01:41Z) - Local Sample-weighted Multiple Kernel Clustering with Consensus
Discriminative Graph [73.68184322526338]
Multiple kernel clustering (MKC) is committed to achieving optimal information fusion from a set of base kernels.
This paper proposes a novel local sample-weighted multiple kernel clustering model.
Experimental results demonstrate that our LSWMKC possesses better local manifold representation and outperforms existing kernel or graph-based clustering algo-rithms.
arXiv Detail & Related papers (2022-07-05T05:00:38Z) - A Multi-disciplinary Ensemble Algorithm for Clustering Heterogeneous
Datasets [0.76146285961466]
We propose a new evolutionary clustering algorithm (ECAStar) based on social class ranking and meta-heuristic algorithms.
ECAStar is integrated with recombinational evolutionary operators, Levy flight optimisation, and some statistical techniques.
Experiments are conducted to evaluate the ECAStar against five conventional approaches.
arXiv Detail & Related papers (2021-01-01T07:20:50Z) - Kernel learning approaches for summarising and combining posterior
similarity matrices [68.8204255655161]
We build upon the notion of the posterior similarity matrix (PSM) in order to suggest new approaches for summarising the output of MCMC algorithms for Bayesian clustering models.
A key contribution of our work is the observation that PSMs are positive semi-definite, and hence can be used to define probabilistically-motivated kernel matrices.
arXiv Detail & Related papers (2020-09-27T14:16:14Z) - An Efficient Smoothing Proximal Gradient Algorithm for Convex Clustering [2.5182813818441945]
Recently introduced convex clustering approach formulates clustering as a convex optimization problem.
State-of-the-art convex clustering algorithms require large computation and memory space.
In this paper, we develop a very efficient smoothing gradient algorithm (Sproga) for convex clustering.
arXiv Detail & Related papers (2020-06-22T20:02:59Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
We propose a novel framework for sparse k-means clustering that is intuitive, simple to implement, and competitive with state-of-the-art algorithms.
Our core method readily generalizes to several task-specific algorithms such as clustering on subsets of attributes and in partially observed data settings.
arXiv Detail & Related papers (2020-02-20T02:41:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.