Improving the Accuracy of Variational Quantum Eigensolvers With Fewer
Qubits Using Orbital Optimization
- URL: http://arxiv.org/abs/2208.14431v2
- Date: Tue, 17 Oct 2023 17:52:36 GMT
- Title: Improving the Accuracy of Variational Quantum Eigensolvers With Fewer
Qubits Using Orbital Optimization
- Authors: Joel Bierman, Yingzhou Li, Jianfeng Lu
- Abstract summary: Near-term quantum computers will be limited in the number of qubits on which they can process information as well as the depth of the circuits that they can coherently carry out.
To-date, experimental demonstrations of algorithms such as the Variational Quantum Eigensolver (VQE) have been limited to small molecules using minimal basis sets.
We propose incorporating an orbital optimization scheme into quantum eigensolvers wherein a parameterized partial unitary transformation is applied to the basis functions set.
- Score: 5.266892492931388
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Near-term quantum computers will be limited in the number of qubits on which
they can process information as well as the depth of the circuits that they can
coherently carry out. To-date, experimental demonstrations of algorithms such
as the Variational Quantum Eigensolver (VQE) have been limited to small
molecules using minimal basis sets for this reason. In this work we propose
incorporating an orbital optimization scheme into quantum eigensolvers wherein
a parameterized partial unitary transformation is applied to the basis
functions set in order to reduce the number of qubits required for a given
problem. The optimal transformation is found by minimizing the ground state
energy with respect to this partial unitary matrix. Through numerical
simulations of small molecules up to 16 spin orbitals, we demonstrate that this
method has the ability to greatly extend the capabilities of near-term quantum
computers with regard to the electronic structure problem. We find that VQE
paired with orbital optimization consistently achieves lower ground state
energies than traditional VQE when using the same number of qubits and even
frequently achieves lower ground state energies than VQE methods using more
qubits.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - A circuit-generated quantum subspace algorithm for the variational quantum eigensolver [0.0]
We propose combining quantum subspace techniques with the variational quantum eigensolver (VQE)
In our approach, the parameterized quantum circuit is divided into a series of smaller subcircuits.
The sequential application of these subcircuits to an initial state generates a set of wavefunctions that we use as a quantum subspace to obtain high-accuracy groundstate energies.
arXiv Detail & Related papers (2024-04-09T18:00:01Z) - Pre-optimizing variational quantum eigensolvers with tensor networks [1.4512477254432858]
We present and benchmark an approach where we find good starting parameters for parameterized quantum circuits by simulating VQE.
We apply this approach to the 1D and 2D Fermi-Hubbard model with system sizes that use up to 32 qubits.
In 2D, the parameters that VTNE finds have significantly lower energy than their starting configurations, and we show that starting VQE from these parameters requires non-trivially fewer operations to come down to a given energy.
arXiv Detail & Related papers (2023-10-19T17:57:58Z) - A Qubit-Efficient Variational Selected Configuration-Interaction Method [0.0]
We present an alternative variational quantum scheme that requires significantly less qubits.
The proposed algorithm, termed variational quantum selected--interaction (VQ-SCI), is based on: (a) representing the target groundstate as a superposition of Slater configurations.
We show that the VQ-SCI reaches the full-CI (FCI) energy within chemical accuracy using the lowest number of qubits reported to date.
arXiv Detail & Related papers (2023-02-13T21:15:08Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Variational Adiabatic Gauge Transformation on real quantum hardware for
effective low-energy Hamiltonians and accurate diagonalization [68.8204255655161]
We introduce the Variational Adiabatic Gauge Transformation (VAGT)
VAGT is a non-perturbative hybrid quantum algorithm that can use nowadays quantum computers to learn the variational parameters of the unitary circuit.
The accuracy of VAGT is tested trough numerical simulations, as well as simulations on Rigetti and IonQ quantum computers.
arXiv Detail & Related papers (2021-11-16T20:50:08Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Quantum simulations of molecular systems with intrinsic atomic orbitals [0.0]
We explore the use of intrinsic atomic orbitals (IAOs) in quantum simulations of molecules.
We investigate ground-state energies and one- and two-body density operators in the framework of the variational quantum eigensolver.
We also demonstrate the use of this approach in the calculation of ground- and excited-states energies of small molecules.
arXiv Detail & Related papers (2020-11-16T18:01:44Z) - Benchmarking adaptive variational quantum eigensolvers [63.277656713454284]
We benchmark the accuracy of VQE and ADAPT-VQE to calculate the electronic ground states and potential energy curves.
We find both methods provide good estimates of the energy and ground state.
gradient-based optimization is more economical and delivers superior performance than analogous simulations carried out with gradient-frees.
arXiv Detail & Related papers (2020-11-02T19:52:04Z) - Gate-free state preparation for fast variational quantum eigensolver
simulations: ctrl-VQE [0.0]
VQE is currently the flagship algorithm for solving electronic structure problems on near-term quantum computers.
We propose an alternative algorithm where the quantum circuit used for state preparation is removed entirely and replaced by a quantum control routine.
As with VQE, the objective function optimized is the expectation value of the qubit-mapped molecular Hamiltonian.
arXiv Detail & Related papers (2020-08-10T17:53:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.