Quantum Annealing for Neural Network optimization problems: a new
approach via Tensor Network simulations
- URL: http://arxiv.org/abs/2208.14468v2
- Date: Sat, 17 Sep 2022 14:29:14 GMT
- Title: Quantum Annealing for Neural Network optimization problems: a new
approach via Tensor Network simulations
- Authors: Guglielmo Lami, Pietro Torta, Giuseppe E. Santoro, Mario Collura
- Abstract summary: Quantum Annealing (QA) is one of the most promising frameworks for quantum optimization.
We show that the adiabatic time evolution of QA can be efficiently represented as a suitable Network.
We show that the optimized state, expressed as a Matrix Product State (MPS), can be recast into a Quantum Circuit.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Annealing (QA) is one of the most promising frameworks for quantum
optimization. Here, we focus on the problem of minimizing complex classical
cost functions associated with prototypical discrete neural networks,
specifically the paradigmatic Hopfield model and binary perceptron. We show
that the adiabatic time evolution of QA can be efficiently represented as a
suitable Tensor Network. This representation allows for simple classical
simulations, well-beyond small sizes amenable to exact diagonalization
techniques. We show that the optimized state, expressed as a Matrix Product
State (MPS), can be recast into a Quantum Circuit, whose depth scales only
linearly with the system size and quadratically with the MPS bond dimension.
This may represent a valuable starting point allowing for further circuit
optimization on near-term quantum devices.
Related papers
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
In recent years, the field of quantum computing has become significantly more mature.
We present an auto-encoded VQE with neural-network predictions: NN-AE-VQE.
We demonstrate these methods on a $H$ molecule, achieving chemical accuracy.
arXiv Detail & Related papers (2024-11-23T23:09:22Z) - Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
We show that quantum annealing for 3-regular graphs can be classically simulated even at scales of 1000 qubits and 5000000qubit gates.
For non-degenerate instances, the unique solution can be read out from the final reduced single-qubit states.
For degenerate problems, such as MaxCut, we introduce an approximate measurement simulation algorithm for graph tensor-network states.
arXiv Detail & Related papers (2024-09-18T18:00:08Z) - Enhancing Scalability of Quantum Eigenvalue Transformation of Unitary Matrices for Ground State Preparation through Adaptive Finer Filtering [0.13108652488669736]
Hamiltonian simulation is a domain where quantum computers have the potential to outperform classical counterparts.
One of the main challenges of such quantum algorithms is up-scaling the system size.
We present an approach to improve the scalability of eigenspace filtering for the ground state preparation of a given Hamiltonian.
arXiv Detail & Related papers (2024-01-17T09:52:24Z) - Simulating non-unitary dynamics using quantum signal processing with
unitary block encoding [0.0]
We adapt a recent advance in resource-frugal quantum signal processing to explore non-unitary imaginary time evolution on quantum computers.
We test strategies for optimising the circuit depth and the probability of successfully preparing the desired imaginary-time evolved states.
We find that QET-U for non-unitary dynamics is flexible, intuitive and straightforward to use, and suggest ways for delivering quantum advantage in simulation tasks.
arXiv Detail & Related papers (2023-03-10T19:00:33Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
We present a self consistent field approach (SCF) within the Adaptive Derivative-Assembled Problem-Assembled Ansatz Variational Eigensolver (ADAPTVQE)
This framework is used for efficient quantum simulations of chemical systems on nearterm quantum computers.
arXiv Detail & Related papers (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
Quantum many-body problems are central to demystifying some exotic quantum phenomena, e.g., high-temperature superconductors.
The combination of neural networks (NN) for representing quantum states, and the Variational Monte Carlo (VMC) algorithm, has been shown to be a promising method for solving such problems.
We propose a NN architecture called Vector-Quantized Neural Quantum States (VQ-NQS) that utilizes vector-quantization techniques to leverage redundancies in the local-energy calculations of the VMC algorithm.
arXiv Detail & Related papers (2022-12-21T19:00:04Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
We present an approach for tackling open quantum system dynamics.
We compactly represent quantum states with autoregressive transformer neural networks.
Efficient algorithms have been developed to simulate the dynamics of the Liouvillian superoperator.
arXiv Detail & Related papers (2020-09-11T18:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.