Quantum Stirling engine based on dinuclear metal complexes
- URL: http://arxiv.org/abs/2208.14548v2
- Date: Wed, 10 May 2023 15:47:37 GMT
- Title: Quantum Stirling engine based on dinuclear metal complexes
- Authors: Clebson Cruz, Hamid-Reza Rastegar-Sedehi, Maron F. Anka, Thiago R. de
Oliveira and Mario Reis
- Abstract summary: This work proposes a quantum Stirling cycle based on a dinuclear metal complex as a working substance.
Results show that the quantum cycle operational modes can be managed when considering the change in the magnetic coupling of the material.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Low-dimensional metal complexes are versatile materials with tunable physical
and chemical properties that make these systems promising platforms for caloric
applications. In this context, this work proposes a quantum Stirling cycle
based on a dinuclear metal complex as a working substance. The results show
that the quantum cycle operational modes can be managed when considering the
change in the magnetic coupling of the material and the temperature of the
reservoirs. Moreover, magnetic susceptibility can be used to characterize the
heat exchanges of each cycle step and, therefore, its performance. As a proof
of concept, the efficiency of the heat engine is obtained from experimental
susceptibility data. These results open doors for studying quantum
thermodynamic cycles by using metal complexes; and further the development of
emerging quantum technologies based on these advanced materials.
Related papers
- Thermalization and Criticality on an Analog-Digital Quantum Simulator [133.58336306417294]
We present a quantum simulator comprising 69 superconducting qubits which supports both universal quantum gates and high-fidelity analog evolution.
We observe signatures of the classical Kosterlitz-Thouless phase transition, as well as strong deviations from Kibble-Zurek scaling predictions.
We digitally prepare the system in pairwise-entangled dimer states and image the transport of energy and vorticity during thermalization.
arXiv Detail & Related papers (2024-05-27T17:40:39Z) - Simulating thermodynamic properties of dinuclear metal complexes using Variational Quantum Algorithms [0.0]
We investigate the use of variational quantum algorithms for simulating the thermodynamic properties of dinuclear metal complexes.
The results demonstrate the effectiveness of variational quantum algorithms in simulating thermal states and exploring the thermodynamic properties of low-dimensional molecular magnetic systems.
arXiv Detail & Related papers (2024-04-09T15:09:54Z) - Exploring quantum thermodynamics with NMR [0.0]
Quantum thermodynamics seeks to extend non-equilibrium thermodynamics to small quantum systems where non-classical features are essential to its description.
This review article provides an overview of some concepts in quantum thermodynamics highlighting test-of-principles experiments using nuclear magnetic resonance techniques.
arXiv Detail & Related papers (2023-03-15T20:21:10Z) - Quantum Engines and Refrigerators [0.0]
Engines are systems and devices that convert one form of energy into another, typically into a more useful form that can perform work.
In the quantum regime, however, the principles of energy conversion become ambiguous, since quantum phenomena come into play.
Our work provides a broad overview of this active field of quantum engines and refrigerators, reviewing the latest theoretical proposals and experimental realizations.
arXiv Detail & Related papers (2023-02-01T19:46:01Z) - Demonstrating Quantum Microscopic Reversibility Using Coherent States of
Light [58.8645797643406]
We propose and experimentally test a quantum generalization of the microscopic reversibility when a quantum system interacts with a heat bath.
We verify that the quantum modification for the principle of microscopic reversibility is critical in the low-temperature limit.
arXiv Detail & Related papers (2022-05-26T00:25:29Z) - Implementation of a two-stroke quantum heat engine with a collisional
model [50.591267188664666]
We put forth a quantum simulation of a stroboscopic two-stroke thermal engine in the IBMQ processor.
The system consists of a quantum spin chain connected to two baths at their boundaries, prepared at different temperatures using the variational quantum thermalizer algorithm.
arXiv Detail & Related papers (2022-03-25T16:55:08Z) - Quantum battery based on quantum discord at room temperature [0.0]
This work presents a feasible realization of a quantum battery in a carboxylate-based metal complex.
It can store a finite amount of extractable work under the form of quantum discord at room temperature, and recharge by thermalization with a reservoir.
arXiv Detail & Related papers (2021-03-31T19:42:25Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Quantum field thermal machines [0.0]
We present a detailed proposal how to realize a quantum machine in one-dimensional ultra-cold atomic gases.
We propose models for compression on the system to use it as a piston, and coupling to a bath that gives rise to a valve controlling heat flow.
The active cooling achieved in this way can operate in regimes where existing cooling methods become ineffective.
arXiv Detail & Related papers (2020-06-01T18:08:57Z) - Reservoir engineering with arbitrary temperatures for spin systems and
quantum thermal machine with maximum efficiency [50.591267188664666]
Reservoir engineering is an important tool for quantum information science and quantum thermodynamics.
We employ this technique to engineer reservoirs with arbitrary (effective) negative and positive temperatures for a single spin system.
arXiv Detail & Related papers (2020-01-28T00:18:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.