Sparsification of the regularized magnetic Laplacian with multi-type spanning forests
- URL: http://arxiv.org/abs/2208.14797v2
- Date: Wed, 20 Mar 2024 09:44:53 GMT
- Title: Sparsification of the regularized magnetic Laplacian with multi-type spanning forests
- Authors: Michaël Fanuel, Rémi Bardenet,
- Abstract summary: We study sparsifiers of the magnetic Laplacian $Delta$, i.e., spectral approximations based on subgraphs with few edges.
We provide statistical guarantees for a choice of natural estimators of the connection Laplacian.
We investigate two practical applications of our sparsifiers: ranking with angular synchronization and graph-based semi-supervised learning.
- Score: 8.30255326875704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we consider a ${\rm U}(1)$-connection graph, that is, a graph where each oriented edge is endowed with a unit modulus complex number that is conjugated under orientation flip. A natural replacement for the combinatorial Laplacian is then the magnetic Laplacian, an Hermitian matrix that includes information about the graph's connection. Magnetic Laplacians appear, e.g., in the problem of angular synchronization. In the context of large and dense graphs, we study here sparsifiers of the magnetic Laplacian $\Delta$, i.e., spectral approximations based on subgraphs with few edges. Our approach relies on sampling multi-type spanning forests (MTSFs) using a custom determinantal point process, a probability distribution over edges that favours diversity. In a word, an MTSF is a spanning subgraph whose connected components are either trees or cycle-rooted trees. The latter partially capture the angular inconsistencies of the connection graph, and thus provide a way to compress the information contained in the connection. Interestingly, when the connection graph has weakly inconsistent cycles, samples from the determinantal point process under consideration can be obtained \`a la Wilson, using a random walk with cycle popping. We provide statistical guarantees for a choice of natural estimators of the connection Laplacian, and investigate two practical applications of our sparsifiers: ranking with angular synchronization and graph-based semi-supervised learning. From a statistical perspective, a side result of this paper of independent interest is a matrix Chernoff bound with intrinsic dimension, which allows considering the influence of a regularization -- of the form $\Delta + q \mathbb{I}$ with $q>0$ -- on sparsification guarantees.
Related papers
- Efficient Learning of Balanced Signed Graphs via Iterative Linear Programming [26.334739062500674]
We propose a fast method to learn a balanced signed graph Laplacian directly from data.
Experiments on synthetic and real-world datasets show that our balanced graph learning method outperforms competing methods.
arXiv Detail & Related papers (2024-09-12T06:53:50Z) - Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Information-Theoretic Thresholds for Planted Dense Cycles [52.076657911275525]
We study a random graph model for small-world networks which are ubiquitous in social and biological sciences.
For both detection and recovery of the planted dense cycle, we characterize the information-theoretic thresholds in terms of $n$, $tau$, and an edge-wise signal-to-noise ratio $lambda$.
arXiv Detail & Related papers (2024-02-01T03:39:01Z) - Graph Fourier MMD for Signals on Graphs [67.68356461123219]
We propose a novel distance between distributions and signals on graphs.
GFMMD is defined via an optimal witness function that is both smooth on the graph and maximizes difference in expectation.
We showcase it on graph benchmark datasets as well as on single cell RNA-sequencing data analysis.
arXiv Detail & Related papers (2023-06-05T00:01:17Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
We show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights.
We propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs.
Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
arXiv Detail & Related papers (2022-08-18T09:19:01Z) - Bi-stochastically normalized graph Laplacian: convergence to manifold Laplacian and robustness to outlier noise [10.418647759223965]
Bi-stochastic normalization provides an alternative normalization of graph Laplacians in graph-based data analysis.
We prove the convergence of bi-stochastically normalized graph Laplacian to manifold (weighted-)Laplacian with rates.
When the manifold data are corrupted by outlier noise, we theoretically prove the graph Laplacian point-wise consistency.
arXiv Detail & Related papers (2022-06-22T21:08:24Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Large sample spectral analysis of graph-based multi-manifold clustering [3.383942690870476]
We study statistical properties of graph-based algorithms for multi-manifold clustering (MMC)
In MMC the goal is to retrieve the multi-manifold structure underlying a given Euclidean data set.
We provide an example of a family of similarity graphs, which we call annular proximity graphs with angle constraints.
arXiv Detail & Related papers (2021-07-28T19:39:12Z) - Testing correlation of unlabeled random graphs [18.08210501570919]
We study the problem of detecting the edge correlation between two random graphs with $n$ unlabeled nodes.
This is formalized as a hypothesis testing problem, where under the null hypothesis, the two graphs are independently generated.
Under the alternative, the two graphs are edge-correlated under some latent node correspondence, but have the same marginal distributions as the null.
arXiv Detail & Related papers (2020-08-23T19:19:45Z) - Lipschitz regularity of graph Laplacians on random data clouds [1.2891210250935146]
We prove high probability interior and global Lipschitz estimates for solutions of graph Poisson equations.
Our results can be used to show that graph Laplacian eigenvectors are, with high probability, essentially Lipschitz regular with constants depending explicitly on their corresponding eigenvalues.
arXiv Detail & Related papers (2020-07-13T20:43:19Z) - Block-Approximated Exponential Random Graphs [77.4792558024487]
An important challenge in the field of exponential random graphs (ERGs) is the fitting of non-trivial ERGs on large graphs.
We propose an approximative framework to such non-trivial ERGs that result in dyadic independence (i.e., edge independent) distributions.
Our methods are scalable to sparse graphs consisting of millions of nodes.
arXiv Detail & Related papers (2020-02-14T11:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.