Efficient Learning of Balanced Signed Graphs via Iterative Linear Programming
- URL: http://arxiv.org/abs/2409.07794v1
- Date: Thu, 12 Sep 2024 06:53:50 GMT
- Title: Efficient Learning of Balanced Signed Graphs via Iterative Linear Programming
- Authors: Haruki Yokota, Hiroshi Higashi, Yuichi Tanaka, Gene Cheung,
- Abstract summary: We propose a fast method to learn a balanced signed graph Laplacian directly from data.
Experiments on synthetic and real-world datasets show that our balanced graph learning method outperforms competing methods.
- Score: 26.334739062500674
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Signed graphs are equipped with both positive and negative edge weights, encoding pairwise correlations as well as anti-correlations in data. A balanced signed graph has no cycles of odd number of negative edges. Laplacian of a balanced signed graph has eigenvectors that map simply to ones in a similarity-transformed positive graph Laplacian, thus enabling reuse of well-studied spectral filters designed for positive graphs. We propose a fast method to learn a balanced signed graph Laplacian directly from data. Specifically, for each node $i$, to determine its polarity $\beta_i \in \{-1,1\}$ and edge weights $\{w_{i,j}\}_{j=1}^N$, we extend a sparse inverse covariance formulation based on linear programming (LP) called CLIME, by adding linear constraints to enforce ``consistent" signs of edge weights $\{w_{i,j}\}_{j=1}^N$ with the polarities of connected nodes -- i.e., positive/negative edges connect nodes of same/opposing polarities. For each LP, we adapt projections on convex set (POCS) to determine a suitable CLIME parameter $\rho > 0$ that guarantees LP feasibility. We solve the resulting LP via an off-the-shelf LP solver in $\mathcal{O}(N^{2.055})$. Experiments on synthetic and real-world datasets show that our balanced graph learning method outperforms competing methods and enables the use of spectral filters and graph convolutional networks (GCNs) designed for positive graphs on signed graphs.
Related papers
- Smoothed Graph Contrastive Learning via Seamless Proximity Integration [30.247207861739245]
Graph contrastive learning (GCL) aligns node representations by classifying node pairs into positives and negatives.
We present a Smoothed Graph Contrastive Learning model (SGCL) that injects proximity information associated with positive/negative pairs in the contrastive loss.
The proposed SGCL adjusts the penalties associated with node pairs in contrastive loss by incorporating three distinct smoothing techniques.
arXiv Detail & Related papers (2024-02-23T11:32:46Z) - Graph Mixup with Soft Alignments [49.61520432554505]
We study graph data augmentation by mixup, which has been used successfully on images.
We propose S-Mixup, a simple yet effective mixup method for graph classification by soft alignments.
arXiv Detail & Related papers (2023-06-11T22:04:28Z) - Sparsification of the regularized magnetic Laplacian with multi-type spanning forests [8.30255326875704]
We study sparsifiers of the magnetic Laplacian $Delta$, i.e., spectral approximations based on subgraphs with few edges.
We provide statistical guarantees for a choice of natural estimators of the connection Laplacian.
We investigate two practical applications of our sparsifiers: ranking with angular synchronization and graph-based semi-supervised learning.
arXiv Detail & Related papers (2022-08-31T12:23:53Z) - Efficient Signed Graph Sampling via Balancing & Gershgorin Disc Perfect
Alignment [51.74913666829224]
We show that for datasets with strong inherent anti-correlations, a suitable graph contains both positive and negative edge weights.
We propose a linear-time signed graph sampling method centered on the concept of balanced signed graphs.
Experimental results show that our signed graph sampling method outperformed existing fast sampling schemes noticeably on various datasets.
arXiv Detail & Related papers (2022-08-18T09:19:01Z) - Learning Sparse Graph with Minimax Concave Penalty under Gaussian Markov
Random Fields [51.07460861448716]
This paper presents a convex-analytic framework to learn from data.
We show that a triangular convexity decomposition is guaranteed by a transform of the corresponding to its upper part.
arXiv Detail & Related papers (2021-09-17T17:46:12Z) - Correlation detection in trees for partial graph alignment [3.5880535198436156]
We consider alignment of graphs, which consists in finding a mapping between the nodes of two graphs which preserves most of the edges.
Our approach is to compare local structures in the two graphs, matching two nodes if their neighborhoods are 'close enough' for correlated graphs.
This problem can be rephrased in terms of testing whether a pair of branching trees is drawn from either a product distribution, or a correlated distribution.
arXiv Detail & Related papers (2021-07-15T22:02:27Z) - Projection-free Graph-based Classifier Learning using Gershgorin Disc
Perfect Alignment [59.87663954467815]
In graph-based binary learning, a subset of known labels $hatx_i$ are used to infer unknown labels.
When restricting labels $x_i$ to binary values, the problem is NP-hard.
We propose a fast projection-free method by solving a sequence of linear programs (LP) instead.
arXiv Detail & Related papers (2021-06-03T07:22:48Z) - Learning Sparse Graph Laplacian with K Eigenvector Prior via Iterative
GLASSO and Projection [58.5350491065936]
We consider a structural assumption on the graph Laplacian matrix $L$.
The first $K$ eigenvectors of $L$ are pre-selected, e.g., based on domain-specific criteria.
We design an efficient hybrid graphical lasso/projection algorithm to compute the most suitable graph Laplacian matrix $L* in H_u+$ given $barC$.
arXiv Detail & Related papers (2020-10-25T18:12:50Z) - Wasserstein-based Graph Alignment [56.84964475441094]
We cast a new formulation for the one-to-many graph alignment problem, which aims at matching a node in the smaller graph with one or more nodes in the larger graph.
We show that our method leads to significant improvements with respect to the state-of-the-art algorithms for each of these tasks.
arXiv Detail & Related papers (2020-03-12T22:31:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.