論文の概要: Predicting spatial distribution of Palmer Drought Severity Index
- arxiv url: http://arxiv.org/abs/2208.14833v2
- Date: Thu, 1 Sep 2022 05:17:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-02 11:35:49.522386
- Title: Predicting spatial distribution of Palmer Drought Severity Index
- Title(参考訳): Palmer Drought Severity Index の空間分布予測
- Authors: V. Grabar, A. Lukashevich, A. Zaytsev
- Abstract要約: 我々はPalmer Drought Severity Index(PDSI)を関心のサブリージョンに予測するモデルを構築した。
我々は、異なる条件下で、世界中の様々な地域を調査する。
我々は、モデルがより良い意思決定とより持続可能な経済を実現するのにどのように役立つかを分析して結果を補完する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: The probability of a drought for a particular region is crucial when making
decisions related to agriculture. Forecasting this probability is critical for
management and challenging at the same time. The prediction model should
consider multiple factors with complex relationships across the region of
interest and neighbouring regions.
We approach this problem by presenting an end-to-end solution based on a
spatio-temporal neural network. The model predicts the Palmer Drought Severity
Index (PDSI) for subregions of interest. Predictions by climate models provide
an additional source of knowledge of the model leading to more accurate drought
predictions.
Our model has better accuracy than baseline Gradient boosting solutions, as
the $R^2$ score for it is $0.90$ compared to $0.85$ for Gradient boosting.
Specific attention is on the range of applicability of the model. We examine
various regions across the globe to validate them under different conditions.
We complement the results with an analysis of how future climate changes for
different scenarios affect the PDSI and how our model can help to make better
decisions and more sustainable economics.
- Abstract(参考訳): 特定の地域で干ばつが起こる確率は、農業に関する決定を行う際に重要である。
この確率を予測することはマネジメントにとって重要であり、同時に挑戦する。
予測モデルは、関心領域と近隣領域の複雑な関係を持つ複数の要因を考慮すべきである。
本稿では,時空間ニューラルネットワークに基づくエンドツーエンドのソリューションを提案することでこの問題に対処する。
このモデルは、関心のサブリージョンに対するPalmer Drought Severity Index(PDSI)を予測する。
気候モデルによる予測は、より正確な干ばつ予測につながるモデルに関するさらなる知識を提供する。
我々のモデルは、ベースライン勾配ブースティングソリューションよりも精度が良く、それに対する$r^2$スコアは$0.90$であり、勾配ブースティングは$0.85$である。
特定の注意は、モデルの適用範囲に向けられる。
我々は世界中の様々な地域を調査し、異なる条件下で検証する。
我々は、異なるシナリオにおける将来の気候変動がpdsiに与える影響と、我々のモデルがより良い意思決定とより持続可能な経済にどのように役立つかを分析して、結果を補完する。
関連論文リスト
- Learning Inter-Annual Flood Loss Risk Models From Historical Flood
Insurance Claims and Extreme Rainfall Data [0.0]
洪水は最も壊滅的な自然災害の1つであり、実質的な経済的損失の原因となっている。
本研究は,国立洪水保険プログラムデータセット上に構築されたレジストレーターの予測能力を評価する。
論文 参考訳(メタデータ) (2022-12-15T19:23:02Z) - Uncertainty estimation of pedestrian future trajectory using Bayesian
approximation [137.00426219455116]
動的トラフィックシナリオでは、決定論的予測に基づく計画は信頼できない。
著者らは、決定論的アプローチが捉えられない近似を用いて予測中の不確実性を定量化する。
将来の状態の不確実性に対する降雨重量と長期予測の影響について検討した。
論文 参考訳(メタデータ) (2022-05-04T04:23:38Z) - A Generative Deep Learning Approach to Stochastic Downscaling of
Precipitation Forecasts [0.5906031288935515]
GAN(Generative Adversarial Network)は、コンピュータビジョンコミュニティによって超高解像度問題で成功することが実証されている。
GANとVAE-GANは、高分解能で空間的に整合した降水マップを作成しながら、最先端のポイントワイズポストプロセッシング手法の統計的特性と一致することを示す。
論文 参考訳(メタデータ) (2022-04-05T07:19:42Z) - Increasing the accuracy and resolution of precipitation forecasts using
deep generative models [3.8073142980733]
我々は、高分解能でバイアス補正された予測のアンサンブルを生成するために、CorrectorGANという条件付きジェネレーティブ・アドバイサル・ネットワークを訓練する。
一度訓練されたCorrectorGANは、1台のマシンで数秒で予測を生成する。
その結果、地域モデルの必要性や、データ駆動型ダウンスケーリングと修正手法がデータ・プール領域に移行できるかどうかについて、エキサイティングな疑問が浮かび上がっている。
論文 参考訳(メタデータ) (2022-03-23T09:45:12Z) - Deep Learning Based Cloud Cover Parameterization for ICON [55.49957005291674]
我々は,実地域およびグローバルICONシミュレーションに基づいて,粗粒度データを用いたNNベースのクラウドカバーパラメータ化を訓練する。
グローバルに訓練されたNNは、地域シミュレーションのサブグリッドスケールのクラウドカバーを再現することができる。
我々は,コラムベースNNがグローバルから局所的な粗粒データに完全に一般化できない理由として,特定の湿度と雲氷上の過剰なエンハンシスを同定する。
論文 参考訳(メタデータ) (2021-12-21T16:10:45Z) - Modeling of Pan Evaporation Based on the Development of Machine Learning
Methods [0.0]
気温、風速、日照時間、湿度、太陽放射などの気候変化は蒸発過程に大きな影響を及ぼす可能性がある。
本研究の目的は、毎月のパン蒸発推定をモデル化するための機械学習(ML)モデルの有効性を検討することである。
論文 参考訳(メタデータ) (2021-10-10T10:06:16Z) - When in Doubt: Neural Non-Parametric Uncertainty Quantification for
Epidemic Forecasting [70.54920804222031]
既存の予測モデルは不確実な定量化を無視し、誤校正予測をもたらす。
不確実性を考慮した時系列予測のためのディープニューラルネットワークの最近の研究にもいくつかの制限がある。
本稿では,予測タスクを確率的生成過程としてモデル化し,EPIFNPと呼ばれる機能的ニューラルプロセスモデルを提案する。
論文 参考訳(メタデータ) (2021-06-07T18:31:47Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - A generative adversarial network approach to (ensemble) weather
prediction [91.3755431537592]
本研究では,500hPaの圧力レベル,2m温度,24時間の総降水量を予測するために,条件付き深部畳み込み生成対向ネットワークを用いた。
提案されたモデルは、2019年に関連する気象分野を予測することを目的として、2015年から2018年までの4年間のERA5の再分析データに基づいて訓練されている。
論文 参考訳(メタデータ) (2020-06-13T20:53:17Z) - A framework for probabilistic weather forecast post-processing across
models and lead times using machine learning [3.1542695050861544]
我々はNWPモデルと意思決定支援の「理想的な」予測とのギャップを埋める方法について述べる。
本研究では,各数値モデルの誤差プロファイルの学習にQuantile Regression Forestsを使用し,これを経験から得られた確率分布を予測に適用する。
第2に、これらの確率予測を量子平均化(quantile averaging)を用いて組み合わせ、第3に、集合量子化の間で補間して完全な予測分布を生成する。
論文 参考訳(メタデータ) (2020-05-06T16:46:02Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。