論文の概要: Quantum holography with single-photon states
- arxiv url: http://arxiv.org/abs/2209.00431v1
- Date: Thu, 1 Sep 2022 13:12:15 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-28 06:39:58.871734
- Title: Quantum holography with single-photon states
- Title(参考訳): 単一光子状態の量子ホログラフィー
- Authors: Denis Abramovi\'c, Nazif Demoli, Mario Stip\v{c}evi\'c, Hrvoje
Skenderovi\'c
- Abstract要約: 単一光子照明と光子統計の連続観測による量子ホログラム記録の初の実験的実現について述べる。
注目すべきは、古典的でないホログラムの再構成は、古典的なホログラムと比較して振幅と位相のコントラストが改善したことである。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The retrieval of the phase with single-photon states is a fundamental and
technical challenging endeavor. Here we report the first experimental
realization of quantum hologram recordings with single-photon illumination and
continuous observation of photon statistics before and after a basic
interferometer. Thereby, we demonstrate the basic principle of holography with
single-photon states which cannot be described with the classical wave theory.
Remarkably, the reconstructions of non-classical holograms show an improvement
in amplitude and phase contrast compared to the classical holograms.
- Abstract(参考訳): 単光子状態による位相の検索は、根本的な技術的挑戦である。
本稿では、単一光子照明による量子ホログラム記録の初回実験と、基本干渉計の前後における光子統計の連続観測について報告する。
これにより、古典波理論では説明できない単光子状態を持つホログラフィの基本原理を示す。
非古典的ホログラムの再構成は古典的ホログラムと比較して振幅と位相のコントラストが向上した。
関連論文リスト
- Pulse characterization at the single-photon level through chronocyclic $Q$-function measurements [2.193021519015704]
本稿では, 単光子レベルの光パルスの複素スペクトル振幅を, クロノサイクリック$Q-$関数の測定により求める。
本手法は, 二次位相空間と時間周波数位相空間の類似性を利用して, 量子状態トモグラフィーからインスピレーションを得る。
論文 参考訳(メタデータ) (2024-08-22T11:30:49Z) - Broadband biphoton source for quantum optical coherence tomography based on a Michelson interferometer [39.58317527488534]
我々は、広帯域の明るいコリニア双光子場を生成するための新しい技術について記述し、実験的に実証する。
光源の最も簡単な応用として、ミシェルソン干渉計を用いた量子光コヒーレンストモグラフィー(Q OCT)を用いる。
論文 参考訳(メタデータ) (2024-01-31T13:52:37Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
渦は非線形物理学における非自明なダイナミクスの目印である。
量子非線形光学媒体における強い光子-光子相互作用による量子渦の実現について報告する。
3つの光子に対して、渦線と中心渦輪の形成は真の3光子相互作用を示す。
論文 参考訳(メタデータ) (2023-02-12T18:11:04Z) - Intensity interferometry for holography with quantum and classical light [0.415623340386296]
我々は信号ビームを基準と組み合わせ、時間タグ付き単一光子カメラを用いてその強度の相互相関を測定する。
これらの相関は、信号波面を強度と位相の両方で再構成する干渉パターンを示す。
信号と参照は位相安定である必要はないため、この技術は自己発光やリモートオブジェクトのホログラムを生成するために使用できる。
論文 参考訳(メタデータ) (2023-01-24T15:13:03Z) - Experimental quantum imaging distillation with undetected light [0.0]
誘導コヒーレンス効果に基づくイメージングでは、光子対を用いて物体の情報を探査する光を検出することなく得る。
提案手法は,実利得信号の最大250倍の雑音レベルに対して,物体の高品質な画像を生成することができることを示す。
論文 参考訳(メタデータ) (2023-01-06T14:41:50Z) - Spatiotemporal single-photon Airy bullets [20.416671946991904]
単一光子の複雑な量子波動関数の抑制的制御は、これまでも解明されていない。
我々は、頑健で万能な任意の量子非拡散時間光弾を合成する。
論文 参考訳(メタデータ) (2022-12-15T10:06:24Z) - On-chip quantum information processing with distinguishable photons [55.41644538483948]
多光子干渉は光量子技術の中心にある。
そこで本研究では,共振器型集積光子源に必要なスケールで変形した光子を干渉させるのに十分な時間分解能で検出を実装できることを実験的に実証した。
ボソンサンプリング実験において,非イデアル光子の時間分解検出がエンタングル操作の忠実度を向上し,計算複雑性の低減を図ることができることを示す。
論文 参考訳(メタデータ) (2022-10-14T18:16:49Z) - Single-photon nonlocality in quantum networks [55.41644538483948]
単一光子の絡み合った状態の非局所性は、それでもビームスプリッタと光検出器のみからなる量子ネットワークにおいて明らかにできることを示す。
この結果から,単光子絡み合いはベルベースの量子情報プロトコルに有用な真のネットワーク非局所相関を生成するための有望な解となる可能性が示唆された。
論文 参考訳(メタデータ) (2021-08-03T20:13:24Z) - Quantum holography with undetected light [0.0]
単一光子のホログラムを光子自体を検出せずに記録する方法を提案する。
古典ホログラフィーのように、単一の光子のホログラムは、光子の「形」に関する完全な情報を取得することができる。
論文 参考訳(メタデータ) (2021-06-09T08:42:51Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
光学場の非ガウス状態は、量子情報応用における提案された資源として重要である。
メソスコピック検出器を応用可能なレシエーションへのアンシラフィールドの変位を含む新しいアプローチを提案する。
実験により,強いウィグナー負性を持つ状態は高い速度で生成可能であると結論付けた。
論文 参考訳(メタデータ) (2021-03-29T16:59:18Z) - Quantum metamaterial for nondestructive microwave photon counting [52.77024349608834]
弱い非線形メタマテリアルに基づいてマイクロ波領域で動作する単一光子検出器の設計を提案する。
単光子検出の忠実度はメタマテリアルの長さとともに増加し,実験的に現実的な長さで接近することを示す。
光領域で動作する従来の光子検出器とは対照的に、光子検出により光子を破壊せず、光子波束を最小限に乱す。
論文 参考訳(メタデータ) (2020-05-13T18:00:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。