Adversarial Stain Transfer to Study the Effect of Color Variation on
Cell Instance Segmentation
- URL: http://arxiv.org/abs/2209.00585v1
- Date: Thu, 1 Sep 2022 16:57:54 GMT
- Title: Adversarial Stain Transfer to Study the Effect of Color Variation on
Cell Instance Segmentation
- Authors: Huaqian Wu, Nicolas Souedet, Camille Mabillon, Caroline Jan, C\'edric
Clouchoux, Thierry Delzescaux
- Abstract summary: Stain color variation in histological images, caused by a variety of factors, is a challenge not only for the visual diagnosis of pathologists but also for cell segmentation algorithms.
Current cell segmentation methods systematically apply stain normalization as a preprocessing step, but the impact brought by color variation has not been quantitatively investigated yet.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Stain color variation in histological images, caused by a variety of factors,
is a challenge not only for the visual diagnosis of pathologists but also for
cell segmentation algorithms. To eliminate the color variation, many stain
normalization approaches have been proposed. However, most were designed for
hematoxylin and eosin staining images and performed poorly on
immunohistochemical staining images. Current cell segmentation methods
systematically apply stain normalization as a preprocessing step, but the
impact brought by color variation has not been quantitatively investigated yet.
In this paper, we produced five groups of NeuN staining images with different
colors. We applied a deep learning image-recoloring method to perform color
transfer between histological image groups. Finally, we altered the color of a
segmentation set and quantified the impact of color variation on cell
segmentation. The results demonstrated the necessity of color normalization
prior to subsequent analysis.
Related papers
- Multi-target stain normalization for histology slides [6.820595748010971]
We introduce a novel approach that leverages multiple reference images to enhance robustness against stain variation.
Our method is parameter-free and can be adopted in existing computational pathology pipelines with no significant changes.
arXiv Detail & Related papers (2024-06-04T07:57:34Z) - DDI-CoCo: A Dataset For Understanding The Effect Of Color Contrast In
Machine-Assisted Skin Disease Detection [51.92255321684027]
We study the interaction between skin tone and color difference effects and suggest that color difference can be an additional reason behind model performance bias between skin tones.
Our work provides a complementary angle to dermatology AI for improving skin disease detection.
arXiv Detail & Related papers (2024-01-24T07:45:24Z) - DARC: Distribution-Aware Re-Coloring Model for Generalizable Nucleus
Segmentation [68.43628183890007]
We argue that domain gaps can also be caused by different foreground (nucleus)-background ratios.
First, we introduce a re-coloring method that relieves dramatic image color variations between different domains.
Second, we propose a new instance normalization method that is robust to the variation in the foreground-background ratios.
arXiv Detail & Related papers (2023-09-01T01:01:13Z) - Stain-invariant self supervised learning for histopathology image
analysis [74.98663573628743]
We present a self-supervised algorithm for several classification tasks within hematoxylin and eosin stained images of breast cancer.
Our method achieves the state-of-the-art performance on several publicly available breast cancer datasets.
arXiv Detail & Related papers (2022-11-14T18:16:36Z) - PalGAN: Image Colorization with Palette Generative Adversarial Networks [51.59276436217957]
We propose a new GAN-based colorization approach PalGAN, integrated with palette estimation and chromatic attention.
PalGAN outperforms state-of-the-arts in quantitative evaluation and visual comparison, delivering notable diverse, contrastive, and edge-preserving appearances.
arXiv Detail & Related papers (2022-10-20T12:28:31Z) - Detecting Recolored Image by Spatial Correlation [60.08643417333974]
Image recoloring is an emerging editing technique that can manipulate the color values of an image to give it a new style.
In this paper, we explore a solution from the perspective of the spatial correlation, which exhibits the generic detection capability for both conventional and deep learning-based recoloring.
Our method achieves the state-of-the-art detection accuracy on multiple benchmark datasets and exhibits well generalization for unknown types of recoloring methods.
arXiv Detail & Related papers (2022-04-23T01:54:06Z) - Texture Characterization of Histopathologic Images Using Ecological
Diversity Measures and Discrete Wavelet Transform [82.53597363161228]
This paper proposes a method for characterizing texture across histopathologic images with a considerable success rate.
It is possible to quantify the intrinsic properties of such images with promising accuracy on two HI datasets.
arXiv Detail & Related papers (2022-02-27T02:19:09Z) - Structure-Preserving Multi-Domain Stain Color Augmentation using
Style-Transfer with Disentangled Representations [0.9051352746190446]
HistAuGAN can simulate a wide variety of realistic histology stain colors, thus making neural networks stain-invariant when applied during training.
Based on a generative adversarial network (GAN) for image-to-image translation, our model disentangles the content of the image, i.e., the morphological tissue structure, from the stain color attributes.
It can be trained on multiple domains and, therefore, learns to cover different stain colors as well as other domain-specific variations introduced in the slide preparation and imaging process.
arXiv Detail & Related papers (2021-07-26T17:52:39Z) - Saliency-based segmentation of dermoscopic images using color
information [3.8073142980733]
This paper investigates how color information, besides saliency, can be used to determine the pigmented lesion region automatically.
We propose a novel method employing a binarization process coupled with new perceptual criteria, inspired by the human visual perception.
We have assessed the method on two public databases, including 1497 dermoscopic images.
arXiv Detail & Related papers (2020-11-26T08:47:10Z) - Pix2Pix-based Stain-to-Stain Translation: A Solution for Robust Stain
Normalization in Histopathology Images Analysis [5.33024001730262]
Stain-to-Stain Translation (STST) is used to stain normalization for Hematoxylin and Eosin stained histopathology images.
We perform the process of translation based on the pix2pix framework, which uses the conditional generator adversarial networks (cGANs)
arXiv Detail & Related papers (2020-02-03T11:19:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.