論文の概要: Index Tracking via Learning to Predict Market Sensitivities
- arxiv url: http://arxiv.org/abs/2209.00780v1
- Date: Fri, 2 Sep 2022 01:52:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:15:28.602848
- Title: Index Tracking via Learning to Predict Market Sensitivities
- Title(参考訳): 学習による指標追跡による市場感性予測
- Authors: Yoonsik Hong, Yanghoon Kim, Jeonghun Kim, Yongmin Choi
- Abstract要約: インデックスファンドは、コスト非効率で非現実的な指標であるインデックスを同一に複製する可能性がある。
市場感性を利用してインデックスを部分的に複製するには、予測または正確に見積もる必要がある。
本稿では,ポートフォリオとインデックスの市場感度の予測値を制御する部分インデックス追跡最適化モデルを提案する。
- 参考スコア(独自算出の注目度): 1.6765420339154895
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A significant number of equity funds are preferred by index funds nowadays,
and market sensitivities are instrumental in managing them. Index funds might
replicate the index identically, which is, however, cost-ineffective and
impractical. Moreover, to utilize market sensitivities to replicate the index
partially, they must be predicted or estimated accurately. Accordingly, first,
we examine deep learning models to predict market sensitivities. Also, we
present pragmatic applications of data processing methods to aid training and
generate target data for the prediction. Then, we propose a
partial-index-tracking optimization model controlling the net predicted market
sensitivities of the portfolios and index to be the same. These processes'
efficacy is corroborated by the Korea Stock Price Index 200. Our experiments
show a significant reduction of the prediction errors compared with historical
estimations, and competitive tracking errors of replicating the index using
fewer than half of the entire constituents. Therefore, we show that applying
deep learning to predict market sensitivities is promising and that our
portfolio construction methods are practically effective. Additionally, to our
knowledge, this is the first study that addresses market sensitivities focused
on deep learning.
- Abstract(参考訳): 現在、インデックスファンドによってかなりの数のエクイティファンドが好まれており、市場感性がそれらの管理に役立っている。
インデックスファンドは、同じインデックスを複製するかもしれないが、コスト非効率で非現実的だ。
さらに、市場感性を利用してインデックスを部分的に複製するには、予測または正確に見積もる必要がある。
そこで、まず、市場感性を予測するためにディープラーニングモデルを検討する。
また,予測対象データの生成と学習を支援するためのデータ処理手法の実用的応用を提案する。
そこで本研究では,ポートフォリオとインデックスの市場感度の予測値を制御する部分インデックス追跡最適化モデルを提案する。
これらのプロセスの有効性は、韓国株価指数200で裏付けられている。
実験では,過去の推定値と比較して予測誤差が有意に減少し,成分全体の半分以下でインデックスを再現する競合追尾誤差がみられた。
したがって,市場感性予測にディープラーニングを適用することは有望であり,ポートフォリオ構築手法が実際に有効であることを示す。
さらに、私たちの知る限りでは、深層学習に焦点をあてた市場感に対処する最初の研究である。
関連論文リスト
- Trading through Earnings Seasons using Self-Supervised Contrastive Representation Learning [1.6574413179773761]
Contrastive Earnings Transformer (CET) は、Contrastive Predictive Coding (CPC) に根ざした自己教師型学習手法である。
我々の研究は、株価データの複雑さを深く掘り下げ、さまざまなモデルが、時間と異なるセクターで急速に変化する収益データの関連性をどのように扱うかを評価している。
CETのCPCに関する基盤は、財務データ時代においても、一貫した株価予測を促進する、微妙な理解を可能にする。
論文 参考訳(メタデータ) (2024-09-25T22:09:59Z) - Gated recurrent neural network with TPE Bayesian optimization for enhancing stock index prediction accuracy [0.0]
インドの著名な株式市場指標であるNIFTY50指数の翌日の終値の予測精度を改善することを目的とする。
8つの影響要因の組み合わせは、基本株価データ、技術指標、原油価格、マクロ経済データから慎重に選択される。
論文 参考訳(メタデータ) (2024-06-02T06:39:01Z) - Uncertainty for Active Learning on Graphs [70.44714133412592]
不確実性サンプリングは、機械学習モデルのデータ効率を改善することを目的とした、アクティブな学習戦略である。
予測の不確実性を超えた不確実性サンプリングをベンチマークし、他のアクティブラーニング戦略に対する大きなパフォーマンスギャップを強調します。
提案手法は,データ生成プロセスの観点から基幹的ベイズ不確実性推定法を開発し,不確実性サンプリングを最適クエリへ導く上での有効性を実証する。
論文 参考訳(メタデータ) (2024-05-02T16:50:47Z) - ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction [20.574163667057476]
我々は、株式市場予測の精度を高めるために、世論の豊かな情報源であるソーシャルメディアデータの力を活用している。
我々は、感情分析、マクロ経済指標、検索エンジンデータ、過去の価格をマルチアテンション深層学習モデルに組み込むアプローチを開拓した。
市場の動向とボラティリティの予測のために,私たちによって特別にキュレーションされたデータセットを用いて,提案モデルの最先端性能を示す。
論文 参考訳(メタデータ) (2023-10-28T13:31:39Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Stock Broad-Index Trend Patterns Learning via Domain Knowledge Informed
Generative Network [2.1163070161951865]
本稿では、市場固有の特性を意図的に設計したインデックスGANを提案する。
また、実数列と予測列の間のワッサーシュタイン距離を近似するために批判を利用する。
論文 参考訳(メタデータ) (2023-02-27T21:56:56Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Deep Portfolio Optimization via Distributional Prediction of Residual
Factors [3.9189409002585562]
そこで本稿では,残余要因と呼ばれる金融量分布の予測に基づくポートフォリオ構築手法を提案する。
本手法が米国および日本の株式市場データに有効であることを実証する。
論文 参考訳(メタデータ) (2020-12-14T04:09:52Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILEは、新しい特徴重要度推定法である。
忠実さと頑健さの両面で、最先端のアプローチよりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2020-09-30T05:29:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。