論文の概要: ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction
- arxiv url: http://arxiv.org/abs/2310.18706v1
- Date: Sat, 28 Oct 2023 13:31:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 16:52:20.488097
- Title: ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock
Movement and Volatility Prediction
- Title(参考訳): alerta-net:株移動と変動予測のための時間距離認識リカレントネットワーク
- Authors: Shengkun Wang, YangXiao Bai, Kaiqun Fu, Linhan Wang, Chang-Tien Lu,
Taoran Ji
- Abstract要約: 我々は、株式市場予測の精度を高めるために、世論の豊かな情報源であるソーシャルメディアデータの力を活用している。
我々は、感情分析、マクロ経済指標、検索エンジンデータ、過去の価格をマルチアテンション深層学習モデルに組み込むアプローチを開拓した。
市場の動向とボラティリティの予測のために,私たちによって特別にキュレーションされたデータセットを用いて,提案モデルの最先端性能を示す。
- 参考スコア(独自算出の注目度): 20.574163667057476
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: For both investors and policymakers, forecasting the stock market is
essential as it serves as an indicator of economic well-being. To this end, we
harness the power of social media data, a rich source of public sentiment, to
enhance the accuracy of stock market predictions. Diverging from conventional
methods, we pioneer an approach that integrates sentiment analysis,
macroeconomic indicators, search engine data, and historical prices within a
multi-attention deep learning model, masterfully decoding the complex patterns
inherent in the data. We showcase the state-of-the-art performance of our
proposed model using a dataset, specifically curated by us, for predicting
stock market movements and volatility.
- Abstract(参考訳): 投資家と政策立案者の両方にとって、株式市場の予測は経済の健全性を示す指標として不可欠である。
この目的のために、我々は、ソーシャルメディアデータ(世論の豊かな情報源)の力を利用して、株式市場予測の精度を高める。
従来の手法から切り離して、感情分析、マクロ経済指標、検索エンジンデータ、歴史的価格を多目的ディープラーニングモデルに統合し、データ固有の複雑なパターンを巧みに復号する手法を考案した。
株式市場の動きやボラティリティを予測するために,我々が特にキュレートしたデータセットを用いて,提案モデルの最先端のパフォーマンスを示す。
関連論文リスト
- F-FOMAML: GNN-Enhanced Meta-Learning for Peak Period Demand Forecasting with Proxy Data [65.6499834212641]
本稿では,需要予測をメタラーニング問題として定式化し,F-FOMAMLアルゴリズムを開発した。
タスク固有のメタデータを通してドメインの類似性を考慮することにより、トレーニングタスクの数が増加するにつれて過剰なリスクが減少する一般化を改善した。
従来の最先端モデルと比較して,本手法では需要予測精度が著しく向上し,内部自動販売機データセットでは平均絶対誤差が26.24%,JD.comデータセットでは1.04%削減された。
論文 参考訳(メタデータ) (2024-06-23T21:28:50Z) - Enhancing Financial Data Visualization for Investment Decision-Making [0.04096453902709291]
本稿では,ストックダイナミクスを予測するLong Short-Term Memory(LSTM)ネットワークの可能性について検討する。
この研究は、複雑なパターンをキャプチャするLSTMの能力を高めるために、複数の特徴を取り入れている。
LSTMには25日間のタイムステップで重要な価格とボリューム特性が組み込まれている。
論文 参考訳(メタデータ) (2023-12-09T07:53:25Z) - Stock Movement and Volatility Prediction from Tweets, Macroeconomic
Factors and Historical Prices [20.574163667057476]
株式市場の予測にツイートデータを使用した以前の研究は、3つの課題に直面した。
ECONには、大量のツイートデータを効率的に抽出し、デコードするアデプトツイートフィルタがある。
意味空間における自己認識機構を通じて、ストック、セクター、マクロ経済要因間の多水準関係を識別する。
論文 参考訳(メタデータ) (2023-12-04T22:27:43Z) - NoxTrader: LSTM-Based Stock Return Momentum Prediction for Quantitative
Trading [0.0]
NoxTraderはポートフォリオの構築と取引実行のために設計された洗練されたシステムである。
NoxTraderの基本的な学習プロセスは、歴史的取引データから得られた貴重な洞察の同化に根ざしている。
厳密な特徴工学と予測対象の選択により,0.65から0.75の範囲の顕著な相関範囲で予測データを生成することができる。
論文 参考訳(メタデータ) (2023-10-01T17:53:23Z) - Diffusion Variational Autoencoder for Tackling Stochasticity in
Multi-Step Regression Stock Price Prediction [54.21695754082441]
長期的地平線上での多段階の株価予測は、ボラティリティの予測に不可欠である。
多段階の株価予測に対する現在の解決策は、主に単一段階の分類に基づく予測のために設計されている。
深層階層型変分オートコーダ(VAE)と拡散確率的手法を組み合わせてセック2seqの株価予測を行う。
本モデルでは, 予測精度と分散性の観点から, 最先端の解よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-08-18T16:21:15Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - HIST: A Graph-based Framework for Stock Trend Forecasting via Mining
Concept-Oriented Shared Information [73.40830291141035]
近年,Webから抽出したストック概念を用いて共有情報をマイニングし,予測結果を改善する手法が提案されている。
これまでの研究では、ストックとコンセプトのつながりは定常的であり、ストックとコンセプトのダイナミックな関連性を無視していた。
本稿では,事前定義された概念と隠れた概念から,概念指向の共有情報を適切にマイニングできる新しいストックトレンド予測フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-26T14:04:04Z) - Stock Price Prediction Under Anomalous Circumstances [81.37657557441649]
本稿では,異常な状況下での株価の変動パターンを捉えることを目的とする。
ARIMAとLSTMのモデルは、シングルストックレベル、業界レベル、一般市場レベルでトレーニングします。
2016年から2020年にかけての100社の株価に基づいて、平均予測精度は98%に達した。
論文 参考訳(メタデータ) (2021-09-14T18:50:38Z) - Profitability Analysis in Stock Investment Using an LSTM-Based Deep
Learning Model [1.2891210250935146]
長期記憶ネットワーク(LSTM)ネットワーク上に構築した深層学習に基づく回帰モデルを提案する。
特定の開始日と終了日について、株式のティッカー名に基づいて過去の株価を抽出し、将来の株価を予測する。
インド株式市場の15の重要セクターから選ばれた75の重要銘柄にモデルを配置する。
論文 参考訳(メタデータ) (2021-04-06T11:09:51Z) - A Sentiment Analysis Approach to the Prediction of Market Volatility [62.997667081978825]
金融ニュースとツイートから抽出された感情とFTSE100の動きの関係を調べました。
ニュース見出しから得られた感情は、市場のリターンを予測するシグナルとして使われる可能性があるが、ボラティリティには当てはまらない。
我々は,新たな情報の到着に応じて,市場の変動を予測するための正確な分類器を開発した。
論文 参考訳(メタデータ) (2020-12-10T01:15:48Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
我々は、S&P500株間のラタグ相関を学習・活用するためにディープラーニングを適用し、安定市場と不安定市場のモデル行動を比較する。
以上の結果から,アキュラシーは有意でありながら,予測地平線が短いほど低下することが示唆された。
ポートフォリオマネージャのための調査ツールとしての現代金融理論と作業の適用性について論じる。
論文 参考訳(メタデータ) (2020-02-24T17:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。