論文の概要: Optimizing quantum circuit parameters via SDP
- arxiv url: http://arxiv.org/abs/2209.00789v1
- Date: Fri, 2 Sep 2022 02:34:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-28 04:08:14.361017
- Title: Optimizing quantum circuit parameters via SDP
- Title(参考訳): SDPによる量子回路パラメータの最適化
- Authors: Eunou Lee
- Abstract要約: 我々は、パラメータ化量子回路の新しいフレームワーク、ラウンドSDPを回路パラメータに導入する。
そこで本研究では,量子最適化問題に対する近似解を生成するアルゴリズム,Quantum Max Cutを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent years, parameterized quantum circuits have become a major tool to
design quantum algorithms for optimization problems. The challenge in fully
taking advantage of a given family of parameterized circuits lies in finding a
good set of parameters in a non-convex landscape that can grow exponentially to
the number of parameters.
We introduce a new framework for optimizing parameterized quantum circuits:
round SDP solutions to circuit parameters. Within this framework, we propose an
algorithm that produces approximate solutions for a quantum optimization
problem called Quantum Max Cut. The rounding algorithm runs in polynomial time
to the number of parameters regardless of the underlying interaction graph.
The resulting 0.562-approximation algorithm for generic instances of Quantum
Max Cut improves on the previously known best algorithms, which give
approximation ratios of less than 0.54.
- Abstract(参考訳): 近年、パラメータ化量子回路は最適化問題のための量子アルゴリズムを設計するための主要なツールとなっている。
パラメータ化された回路の族を完全に活用することの難しさは、パラメータの数が指数関数的に増加するような非凸ランドスケープにおいて良いパラメータの集合を見つけることである。
本稿では,パラメータ化量子回路を最適化するための新しいフレームワークについて紹介する。
この枠組みでは,量子最大カットと呼ばれる量子最適化問題に対して近似解を生成するアルゴリズムを提案する。
丸めアルゴリズムは、基礎となる相互作用グラフに関係なく、パラメータの数に多項式時間で実行される。
その結果、量子最大カットの一般的な例に対する0.562近似アルゴリズムは、既知の最良アルゴリズムに改善され、近似比は 0.54 未満となる。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Optimal compilation of parametrised quantum circuits [0.0]
パラメトリクス量子回路は、量子デバイス上で回路を実行する前に古典的なアルゴリズムによって位相が決定される位相ゲートを含む。
これらのアルゴリズムを可能な限り効率的にするためには、最も少ない数のパラメータを使うことが重要である。
パラメータ数を最小化する一般的な問題はNPハードであるが、パラメトリッド位相ゲートとは別個の回路に制限されている場合、最適パラメータカウントを効率的に見つけることができる。
論文 参考訳(メタデータ) (2024-01-23T16:13:20Z) - Approximate Quantum Compiling for Quantum Simulation: A Tensor Network based approach [1.237454174824584]
行列生成状態(MPS)から短深さ量子回路を生成する新しいアルゴリズムであるAQCtensorを導入する。
我々のアプローチは、量子多体ハミルトニアンの時間進化から生じる量子状態の準備に特化している。
100量子ビットのシミュレーション問題に対して、AQCtensorは、結果の最適化回路の深さの少なくとも1桁の縮小を実現していることを示す。
論文 参考訳(メタデータ) (2023-01-20T14:40:29Z) - Twisted hybrid algorithms for combinatorial optimization [68.8204255655161]
提案されたハイブリッドアルゴリズムは、コスト関数をハミルトニアン問題にエンコードし、回路の複雑さの低い一連の状態によってエネルギーを最適化する。
レベル$p=2,ldots, 6$の場合、予想される近似比をほぼ維持しながら、レベル$p$を1に減らすことができる。
論文 参考訳(メタデータ) (2022-03-01T19:47:16Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Progress towards analytically optimal angles in quantum approximate
optimisation [0.0]
量子近似最適化アルゴリズム(Quantum Approximate optimization algorithm)は、量子プロセッサ上で実行される時間可変分割演算子である。
p=1$層の最適パラメータが1自由変数に減少し、熱力学の極限で最適角度を回復することが証明された。
さらに、重なり関数の勾配の消失条件は、回路パラメータ間の線形関係を導出し、キュービット数に依存しない類似の形式を持つことを示した。
論文 参考訳(メタデータ) (2021-09-23T18:00:13Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。