論文の概要: Progress towards analytically optimal angles in quantum approximate
optimisation
- arxiv url: http://arxiv.org/abs/2109.11566v1
- Date: Thu, 23 Sep 2021 18:00:13 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-13 22:53:15.142208
- Title: Progress towards analytically optimal angles in quantum approximate
optimisation
- Title(参考訳): 量子近似最適化における解析最適角度の進展
- Authors: D. Rabinovich, R. Sengupta, E. Campos, V. Akshay, and J. Biamonte
- Abstract要約: 量子近似最適化アルゴリズム(Quantum Approximate optimization algorithm)は、量子プロセッサ上で実行される時間可変分割演算子である。
p=1$層の最適パラメータが1自由変数に減少し、熱力学の極限で最適角度を回復することが証明された。
さらに、重なり関数の勾配の消失条件は、回路パラメータ間の線形関係を導出し、キュービット数に依存しない類似の形式を持つことを示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Quantum Approximate Optimisation Algorithm is a $p$ layer, time-variable
split operator method executed on a quantum processor and driven to convergence
by classical outer loop optimisation. The classical co-processor varies
individual application times of a problem/driver propagator sequence to prepare
a state which approximately minimizes the problem's generator. Analytical
solutions to choose optimal application times (called angles) have proven
difficult to find, whereas outer loop optimisation is resource intensive. Here
we prove that optimal Quantum Approximate Optimisation Algorithm parameters for
$p=1$ layer reduce to one free variable and in the thermodynamic limit, we
recover optimal angles. We moreover demonstrate that conditions for vanishing
gradients of the overlap function share a similar form which leads to a linear
relation between circuit parameters, independent on the number of qubits.
Finally, we present a list of numerical effects, observed for particular system
size and circuit depth, which are yet to be explained analytically.
- Abstract(参考訳): 量子近似最適化アルゴリズム(quantum approximation optimization algorithm)は、量子プロセッサ上で実行され、古典的なアウターループ最適化によって収束する時間変数分割演算子法である。
古典的コプロセッサは、問題/ドライバプロパゲータシーケンスの個々のアプリケーション時間を変化させて、問題のジェネレータをほぼ最小化する状態を作成する。
最適な適用時間(角度と呼ばれる)を選択する分析解を見つけることは困難であるが、アウターループ最適化はリソース集約的である。
ここでは,$p=1$層に対する最適量子近似最適化アルゴリズムパラメータを1自由変数に還元し,熱力学的極限において最適角度を回復することを示す。
さらに、オーバーラップ関数の勾配を消失させる条件は、量子ビット数に依存しない、回路パラメータ間の線形関係をもたらす類似の形式を持つことを示す。
最後に、解析的にはまだ説明されていない特定のシステムサイズと回路深さで観測された数値効果の一覧を示す。
関連論文リスト
- Quantum Circuit Optimization using Differentiable Programming of Tensor Network States [0.0]
このアルゴリズムは古典的なハードウェア上で動作し、浅い正確な量子回路を見つける。
すべての回路は、適切なCPU時間と控えめなメモリ要求下で高い状態忠実性を達成する。
論文 参考訳(メタデータ) (2024-08-22T17:48:53Z) - Accelerated First-Order Optimization under Nonlinear Constraints [73.2273449996098]
我々は、制約付き最適化のための一階アルゴリズムと非滑らかなシステムの間で、新しい一階アルゴリズムのクラスを設計する。
これらのアルゴリズムの重要な性質は、制約がスパース変数の代わりに速度で表されることである。
論文 参考訳(メタデータ) (2023-02-01T08:50:48Z) - The Quantum Approximate Optimization Algorithm performance with low
entanglement and high circuit depth [0.0]
変分量子アルゴリズムは、現在の雑音量子コンピュータを使用する最も広範な方法の1つである。
最適化問題の解法における絡み合いの役割について検討する。
ここでは, 絡み合いが MaxCut と Exact Cover 3 問題において軽微な役割を担っていると結論づける。
論文 参考訳(メタデータ) (2022-07-07T16:21:36Z) - Quantum Goemans-Williamson Algorithm with the Hadamard Test and
Approximate Amplitude Constraints [62.72309460291971]
本稿では,n+1$ qubitsしか使用しないGoemans-Williamsonアルゴリズムの変分量子アルゴリズムを提案する。
補助量子ビット上で適切にパラメータ化されたユニタリ条件として目的行列を符号化することにより、効率的な最適化を実現する。
各種NPハード問題に対して,Goemans-Williamsonアルゴリズムの量子的効率的な実装を考案し,提案プロトコルの有効性を実証する。
論文 参考訳(メタデータ) (2022-06-30T03:15:23Z) - Unsupervised strategies for identifying optimal parameters in Quantum
Approximate Optimization Algorithm [3.508346077709686]
最適化なしでパラメータを設定するための教師なし機械学習手法について検討する。
繰り返しに使用するQAOAパラメータの数が3ドルに制限された場合、これらをRecursive-QAOAで3ドルまで紹介します。
我々は、アングルを広範囲に最適化し、多数のサーキットコールを省く場合と同じような性能を得る。
論文 参考訳(メタデータ) (2022-02-18T19:55:42Z) - Parameters Fixing Strategy for Quantum Approximate Optimization
Algorithm [0.0]
そこで本稿では,QAOAをパラメータとして初期化することで,回路深度が大きければ平均で高い近似比を与える手法を提案する。
我々は3つの正則グラフやエルド・オス=ルネニグラフのようなグラフのある種のクラスにおけるマックスカット問題に対する我々の戦略をテストする。
論文 参考訳(メタデータ) (2021-08-11T15:44:16Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
間接制御理論に対する頑健で柔軟な代替手段として, 直接最適制御を提案する。
この方法は、バイスタブルポテンシャルにおけるレーザー駆動のウェーブパレットダイナミクスの場合に説明される。
論文 参考訳(メタデータ) (2020-10-08T07:59:29Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Warm-starting quantum optimization [6.832341432995627]
最適化問題の緩和解に対応する初期状態を用いて量子最適化を温める方法について論じる。
これにより、量子アルゴリズムは古典的なアルゴリズムの性能保証を継承することができる。
同じ考えを他のランダム化ラウンドスキームや最適化問題に適用するのは簡単である。
論文 参考訳(メタデータ) (2020-09-21T18:00:09Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。