論文の概要: Self-Score: Self-Supervised Learning on Score-Based Models for MRI
Reconstruction
- arxiv url: http://arxiv.org/abs/2209.00835v1
- Date: Fri, 2 Sep 2022 06:21:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 12:57:41.910344
- Title: Self-Score: Self-Supervised Learning on Score-Based Models for MRI
Reconstruction
- Title(参考訳): スコアモデルを用いたmri再構成のための自己教師付き学習
- Authors: Zhuo-Xu Cui, Chentao Cao, Shaonan Liu, Qingyong Zhu, Jing Cheng,
Haifeng Wang, Yanjie Zhu, Dong Liang
- Abstract要約: 本稿では,MRI再構成のための完全サンプルデータフリースコアベース拡散モデルを提案する。
アンダーサンプリングされたデータに基づいて、自己監督的な方法で、完全にサンプリングされたMR画像を学ぶ。
公開データセットにおける実験により,提案手法は既存の自己教師型MRI再構成法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 18.264778497591603
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, score-based diffusion models have shown satisfactory performance in
MRI reconstruction. Most of these methods require a large amount of fully
sampled MRI data as a training set, which, sometimes, is difficult to acquire
in practice. This paper proposes a fully-sampled-data-free score-based
diffusion model for MRI reconstruction, which learns the fully sampled MR image
prior in a self-supervised manner on undersampled data. Specifically, we first
infer the fully sampled MR image distribution from the undersampled data by
Bayesian deep learning, then perturb the data distribution and approximate
their probability density gradient by training a score function. Leveraging the
learned score function as a prior, we can reconstruct the MR image by
performing conditioned Langevin Markov chain Monte Carlo (MCMC) sampling.
Experiments on the public dataset show that the proposed method outperforms
existing self-supervised MRI reconstruction methods and achieves comparable
performances with the conventional (fully sampled data trained) score-based
diffusion methods.
- Abstract(参考訳): 近年,MRI再建におけるスコアベース拡散モデルの性能は良好である。
これらの手法の多くは、トレーニングセットとして大量の完全なMRIデータを必要とするが、実際には取得が難しい場合もある。
本稿では,MRI再構成のための完全サンプルデータフリーなスコアベース拡散モデルを提案する。
具体的には,ベイジアン深層学習によるアンダーサンプルデータから完全なMR画像分布を推定し,そのデータを摂動し,その確率密度勾配をスコア関数のトレーニングにより近似する。
学習スコア関数を先行として活用することにより,条件付きランゲヴィンマルコフ連鎖モンテカルロ(MCMC)サンプリングによりMR画像を再構成することができる。
実験の結果,提案手法は既存の自己教師型MRI再構成法より優れており,従来のスコアベース拡散法と同等の性能を示した。
関連論文リスト
- Highly Accelerated MRI via Implicit Neural Representation Guided Posterior Sampling of Diffusion Models [2.5412006057370893]
Inlicit Neural representation (INR) は、逆問題を解決するための強力なパラダイムとして登場した。
提案するフレームワークは、他の医療画像タスクにおける逆問題を解決するための一般化可能なフレームワークである。
論文 参考訳(メタデータ) (2024-07-03T01:37:56Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - Dual-Domain Self-Supervised Learning for Accelerated Non-Cartesian MRI
Reconstruction [14.754843942604472]
非カルテシアンMRIの再生を高速化するための完全自己教師型アプローチを提案する。
トレーニングでは、アンダーサンプリングされたデータは、非結合のk空間ドメイン分割に分割される。
画像レベルの自己スーパービジョンでは、元のアンサンプデータから得られる外観整合性を強制する。
論文 参考訳(メタデータ) (2023-02-18T06:11:49Z) - Iterative Data Refinement for Self-Supervised MR Image Reconstruction [18.02961646651716]
自己教師型MR画像再構成のためのデータ改質フレームワークを提案する。
まず,自己教師付き手法と教師付き手法のパフォーマンスギャップの原因を解析する。
そして、このデータバイアスを低減するために、効果的な自己教師付きトレーニングデータ精錬法を設計する。
論文 参考訳(メタデータ) (2022-11-24T06:57:16Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - MRI Reconstruction via Data Driven Markov Chain with Joint Uncertainty
Estimation [3.5751623095926806]
本稿では,MRI再構成のための学習確率分布からの効率的なサンプリングを可能にするフレームワークを提案する。
データ駆動型マルコフ連鎖は、所定の画像データベースから学習した生成モデルから構築される。
提案手法の性能は, 10倍の高速化獲得を用いて, オープンデータセット上で評価する。
論文 参考訳(メタデータ) (2022-02-03T09:13:49Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Score-based diffusion models for accelerated MRI [35.3148116010546]
本研究では,画像中の逆問題を容易に解けるような条件分布からデータをサンプリングする方法を提案する。
我々のモデルは、訓練のためにのみ等級画像を必要とするが、複雑な値のデータを再構成することができ、さらに並列画像まで拡張できる。
論文 参考訳(メタデータ) (2021-10-08T08:42:03Z) - Robust Compressed Sensing MRI with Deep Generative Priors [84.69062247243953]
臨床MRIデータに対するCSGMフレームワークの初成功例を示す。
我々は、高速MRIデータセットから脳スキャンに先立って生成をトレーニングし、Langevin dynamicsによる後部サンプリングが高品質な再構成を実現することを示す。
論文 参考訳(メタデータ) (2021-08-03T08:52:06Z) - Learning Energy-Based Models by Diffusion Recovery Likelihood [61.069760183331745]
本稿では,エネルギーベースモデルから気軽に学習・サンプルできる拡散回復可能性法を提案する。
学習後、ガウスの白色雑音分布から初期化するサンプリングプロセスにより合成画像を生成することができる。
非条件 CIFAR-10 では,本手法は FID 9.58 と開始スコア 8.30 を達成する。
論文 参考訳(メタデータ) (2020-12-15T07:09:02Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
磁気共鳴画像(MRI)の異常検出は教師なし手法で行うことができる。
本研究では,変分オートエンコーダの潜伏空間における相似関数の計算に基づいて,腫瘍検出のためのスライスワイズ半教師法を提案する。
本研究では,高解像度画像上でのモデルをトレーニングし,再現の質を向上させることにより,異なるベースラインに匹敵する結果が得られることを示す。
論文 参考訳(メタデータ) (2020-07-24T14:02:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。