論文の概要: DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity
- arxiv url: http://arxiv.org/abs/2209.01317v2
- Date: Mon, 18 Nov 2024 04:12:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-19 14:31:12.684106
- Title: DeUEDroid: Detecting Underground Economy Apps Based on UTG Similarity
- Title(参考訳): DeUEDroid:UTGの類似性に基づく地下経済アプリ検出
- Authors: Zhuo Chen, Jie Liu, Yubo Hu, Lei Wu, Yajin Zhou, Yiling He, Xianhao Liao, Ke Wang, Jinku Li, Zhan Qin,
- Abstract要約: アンダーグラウンドエコノミーアプリ(UEware)は、非準拠のサービスを提供することで利益を得る。
UI遷移グラフ(UTG)を考慮したUEwareの効率的かつ効率的な検出手法を提案する。
提案手法に基づいて,検出を行うシステムDeUEDroidの設計と実装を行う。
- 参考スコア(独自算出の注目度): 19.82647184916205
- License:
- Abstract: In recent years, the underground economy is proliferating in the mobile system. These underground economy apps (UEware) make profits from providing non-compliant services, especially in sensitive areas such as gambling, pornography, and loans. Unlike traditional malware, most of them (over 80%) do not have malicious payloads. Due to their unique characteristics, existing detection approaches cannot effectively and efficiently mitigate this emerging threat. To address this problem, we propose a novel approach to effectively and efficiently detect UEware by considering their UI transition graphs (UTGs). Based on the proposed approach, we design and implement a system named DeUEDroid to perform the detection. To evaluate DeUEDroid, we collect 25,717 apps and build the first large-scale ground-truth dataset (1,700 apps) of UEware. The evaluation result based on the ground-truth dataset shows that DeUEDroid can cover new UI features and statically construct precise UTG. It achieves 98.22% detection F1-score and 98.97% classification accuracy, significantly outperforming traditional approaches. The evaluation involving 24,017 apps demonstrates the effectiveness and efficiency of UEware detection in real-world scenarios. Furthermore, the result reveals that UEware are prevalent, with 54% of apps in the wild and 11% of apps in app stores being UEware. Our work sheds light on future work in analyzing and detecting UEware.
- Abstract(参考訳): 近年、地下経済はモバイル化が進んでいる。
これらのアンダーグラウンドエコノミーアプリ(UEware)は、特にギャンブル、ポルノグラフィー、ローンなどのセンシティブな分野において、非準拠サービスを提供することで利益を上げている。
従来のマルウェアとは異なり、ほとんどのマルウェア(80%以上)は悪意のあるペイロードを持っていない。
これらの特徴により、既存の検出手法は、この出現する脅威を効果的に効果的に軽減することはできない。
そこで本研究では,UI遷移グラフ(UTG)を用いてUEwareを効果的かつ効率的に検出する手法を提案する。
提案手法に基づいて,検出を行うシステムDeUEDroidの設計と実装を行う。
DeUEDroidを評価するために、25,717のアプリを収集し、UEwareの最初の大規模グラウンドトゥルースデータセット(1,700アプリ)を構築しました。
グラウンドトゥルースデータセットに基づく評価結果は、DeUEDroidが新しいUI機能をカバーし、正確なUTGを静的に構築できることを示している。
98.22%のF1スコアと98.97%の分類精度を達成し、従来の手法よりも大幅に優れている。
24,017個のアプリによる評価は,実世界のシナリオにおけるUEware検出の有効性と効率を実証する。
さらに、UEwareが普及しており、アプリの54%、アプリストアの11%がUEwareであることが明らかになった。
我々の研究は、UEwareの分析と検出における今後の取り組みに光を当てている。
関連論文リスト
- Uncertainty Estimation for 3D Object Detection via Evidential Learning [63.61283174146648]
本稿では,3次元検出器における鳥の視線表示における明らかな学習損失を利用して,3次元物体検出の不確かさを定量化するためのフレームワークを提案する。
本研究では,これらの不確実性評価の有効性と重要性を,分布外シーンの特定,局所化の不十分な物体の発見,および(偽陰性)検出の欠如について示す。
論文 参考訳(メタデータ) (2024-10-31T13:13:32Z) - What If We Had Used a Different App? Reliable Counterfactual KPI Analysis in Wireless Systems [52.499838151272016]
本稿では、無線アクセスネットワーク(RAN)によって異なるアプリが実装された場合、キーパフォーマンス指標(KPI)の値を推定する「What-if」問題に対処する。
本稿では,推定値に対して信頼度の高い「エラーバー」を提供する無線システムに対する共形予測に基づく対実解析手法を提案する。
論文 参考訳(メタデータ) (2024-09-30T18:47:26Z) - Can you See me? On the Visibility of NOPs against Android Malware Detectors [1.2187048691454239]
本稿では,NOPや類似の非運用コードを見つけることの難しさを評価するための可視性指標を提案する。
われわれは、Androidマルウェア検出のための最先端のオプコードベースのディープラーニングシステム上で、我々の測定値を試した。
論文 参考訳(メタデータ) (2023-12-28T20:48:16Z) - Harnessing the Power of Decision Trees to Detect IoT Malware [0.0]
IoT(Internet of Things)は、マルウェア攻撃の影響を受けやすい。
静的な手法を用いる現在の方法と分析は効果がない。
本稿では,決定木の力を利用する新しい検出・解析手法を提案する。
論文 参考訳(メタデータ) (2023-01-28T00:56:10Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
一般的な評価フレームワークを用いて,Androidのマルウェア検出に関する10の研究成果を分析した。
データセットの作成やデザイナの設計に考慮しない場合、トレーニングされたMLモデルに大きく影響する5つの要因を特定します。
その結果,MLに基づく検出器は楽観的に評価され,良好な結果が得られた。
論文 参考訳(メタデータ) (2022-05-25T08:28:08Z) - A lightweight and accurate YOLO-like network for small target detection
in Aerial Imagery [94.78943497436492]
小型ターゲット検出のためのシンプルで高速で効率的なネットワークであるYOLO-Sを提案する。
YOLO-SはDarknet20をベースとした小さな特徴抽出器と、バイパスと連結の両方を通じて接続をスキップする。
YOLO-Sはパラメータサイズが87%減少し、約半分のFLOPがYOLOv3となり、低消費電力の産業用アプリケーションに実用化された。
論文 参考訳(メタデータ) (2022-04-05T16:29:49Z) - Android Malware Detection using Feature Ranking of Permissions [0.0]
当社はAndroidのパーミッションを車として使用し、良性アプリとマルウェアアプリを迅速かつ効果的に区別できるようにしています。
解析の結果,本手法は,他の手法よりも精度が高く,Fスコア値も高いことがわかった。
論文 参考訳(メタデータ) (2022-01-20T22:08:20Z) - EvadeDroid: A Practical Evasion Attack on Machine Learning for Black-box
Android Malware Detection [2.2811510666857546]
EvadeDroidは、現実のシナリオでブラックボックスのAndroidマルウェア検出を効果的に回避するために設計された、問題空間の敵攻撃である。
EvadeDroidは, DREBIN, Sec-SVM, ADE-MA, MaMaDroid, Opcode-SVMに対して, 1-9クエリで80%-95%の回避率を達成した。
論文 参考訳(メタデータ) (2021-10-07T09:39:40Z) - Identification of Significant Permissions for Efficient Android Malware
Detection [2.179313476241343]
5つのビジネス/産業モバイルアプリケーションの1つが機密個人データを漏洩します。
従来のシグネチャ/ヒューリスティックベースのマルウェア検出システムは、現在のマルウェア問題に対処できない。
機械学習とディープニューラルネットワークを用いた効率的なAndroidマルウェア検出システムを提案する。
論文 参考訳(メタデータ) (2021-02-28T22:07:08Z) - Emerging App Issue Identification via Online Joint Sentiment-Topic
Tracing [66.57888248681303]
本稿では,MERITという新しい問題検出手法を提案する。
AOBSTモデルに基づいて、1つのアプリバージョンに対するユーザレビューに否定的に反映されたトピックを推測する。
Google PlayやAppleのApp Storeで人気のアプリに対する実験は、MERITの有効性を実証している。
論文 参考訳(メタデータ) (2020-08-23T06:34:05Z) - Mind the GAP: Security & Privacy Risks of Contact Tracing Apps [75.7995398006171]
GoogleとAppleは共同で,Bluetooth Low Energyを使用した分散型コントラクトトレースアプリを実装するための公開通知APIを提供している。
実世界のシナリオでは、GAP設計は(i)プロファイリングに脆弱で、(ii)偽の連絡先を生成できるリレーベースのワームホール攻撃に弱いことを実証する。
論文 参考訳(メタデータ) (2020-06-10T16:05:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。