Maximal entanglement between a quantum walker and her quantum coin for
the third step and beyond regardless of the initial state
- URL: http://arxiv.org/abs/2209.01727v1
- Date: Mon, 5 Sep 2022 02:24:29 GMT
- Title: Maximal entanglement between a quantum walker and her quantum coin for
the third step and beyond regardless of the initial state
- Authors: Xiao-Xu Fang, Kui An, Bai-Tao Zhang, Barry C. Sanders and He Lu
- Abstract summary: We study maximal entanglement generation between a walker and her coin via a discrete-time quantum walk.
We solve maximal-entanglement generation as an optimization problem with quantum process fidelity as the cost function.
We demonstrate a ten-step quantum walk with such coin sequences and thereby show the desired high-dimensional bipartite entanglement.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study maximal entanglement generation between a walker and her coin via a
discrete-time quantum walk, in which the coin operation is randomly selected
from one of two coin operators set at each step. We solve maximal-entanglement
generation as an optimization problem with quantum process fidelity as the cost
function. Then we determine an appropriate pair of one-parameter coins along
with coin sequences that generate maximal entanglement, which is available for
any step beyond the second regardless of initial condition. We further simplify
the coin set to comprising Hadamard and identity operations, which are feasible
experimentally. Experimentally, we demonstrate a ten-step quantum walk with
such coin sequences and thereby show the desired high-dimensional bipartite
entanglement.
Related papers
- Efficient Quantum Pseudorandomness from Hamiltonian Phase States [41.94295877935867]
We introduce a quantum hardness assumption called the Hamiltonian Phase State (HPS) problem.
We show that our assumption is plausibly fully quantum; meaning, it cannot be used to construct one-way functions.
We show that our assumption and its variants allow us to efficiently construct many pseudorandom quantum primitives.
arXiv Detail & Related papers (2024-10-10T16:10:10Z) - Towards large-scale quantum optimization solvers with few qubits [59.63282173947468]
We introduce a variational quantum solver for optimizations over $m=mathcalO(nk)$ binary variables using only $n$ qubits, with tunable $k>1$.
We analytically prove that the specific qubit-efficient encoding brings in a super-polynomial mitigation of barren plateaus as a built-in feature.
arXiv Detail & Related papers (2024-01-17T18:59:38Z) - Scouring Parrondo's Paradox in Discrete-Time Quantum Walks [0.0]
Parrondo's paradox is a phenomenon where a combination of losing strategies becomes a winning strategy.
Unlike traditional quantum steps that allow for equal magnitude forward and backward strides based on the outcome of the coin-toss, the steps employed here permit the strides to be of unequal magnitude.
arXiv Detail & Related papers (2024-01-17T05:31:02Z) - Approximation Algorithms for Quantum Max-$d$-Cut [42.248442410060946]
The Quantum Max-$d$-Cut problem involves finding a quantum state that maximizes the expected energy associated with the projector onto the antisymmetric subspace of two, $d$-dimensional qudits over all local interactions.
We develop an algorithm that finds product-state solutions of mixed states with bounded purity that achieve non-trivial performance guarantees.
arXiv Detail & Related papers (2023-09-19T22:53:17Z) - Influence of generic quantum coins on the spreading and entanglement in
binary aperiodic quantum walks [0.0]
We investigate the influence of generic quantum coins on the hybrid entanglement and spreading behavior of different binary quantum walks.
We show that each considered walk is differently but significantly influenced by the choice of quantum coins.
arXiv Detail & Related papers (2023-07-12T17:53:20Z) - A Quantum Optimal Control Problem with State Constrained Preserving
Coherence [68.8204255655161]
We consider a three-level $Lambda$-type atom subjected to Markovian decoherence characterized by non-unital decoherence channels.
We formulate the quantum optimal control problem with state constraints where the decoherence level remains within a pre-defined bound.
arXiv Detail & Related papers (2022-03-24T21:31:34Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - One-dimensional discrete-time quantum walks with general coin [0.0]
We provide an algorithm for the one-dimensional quantum walk driven by the general coin operator.
The study conducted on general coin operator also includes the popular coins -- Hadamard, Grover, and Fourier coins.
arXiv Detail & Related papers (2021-02-14T17:42:43Z) - A crossover between open quantum random walks to quantum walks [0.0]
The walk connects an open quantum random walk and a quantum walk with parameters $Min mathbbN$ controlling a decoherence effect.
We analytically show that a typical behavior of quantum walks appears even in a small gap of the parameter from the open quantum random walk.
arXiv Detail & Related papers (2020-07-02T07:42:24Z) - Second-order topological insulator in a coinless discrete-time quantum
walk [3.7528520149256006]
We construct a two-dimensional coinless quantum walk to simulate second-order topological insulator with zero-dimensional corner states.
We show that both of the corner and edge states can be observed through the probability distribution of the walker.
We propose a possible experimental implementation to realize this discrete-time quantum walk in a three-dimensional integrated photonic circuits.
arXiv Detail & Related papers (2020-03-19T09:07:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.