論文の概要: A Study on Representation Transfer for Few-Shot Learning
- arxiv url: http://arxiv.org/abs/2209.02073v1
- Date: Mon, 5 Sep 2022 17:56:02 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 13:03:47.527028
- Title: A Study on Representation Transfer for Few-Shot Learning
- Title(参考訳): ファウショット学習のための表現伝達に関する研究
- Authors: Chun-Nam Yu, Yi Xie
- Abstract要約: ほとんどショットの分類は、いくつかのラベル付き例を使って、新しいオブジェクトカテゴリを適切に分類することを目的としていない。
本研究では, 様々な特徴表現の体系的研究を行い, 数発の分類を行う。
より複雑なタスクからの学習は、数ショットの分類においてより良い表現を与える傾向にある。
- 参考スコア(独自算出の注目度): 5.717951523323085
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot classification aims to learn to classify new object categories well
using only a few labeled examples. Transferring feature representations from
other models is a popular approach for solving few-shot classification
problems. In this work we perform a systematic study of various feature
representations for few-shot classification, including representations learned
from MAML, supervised classification, and several common self-supervised tasks.
We find that learning from more complex tasks tend to give better
representations for few-shot classification, and thus we propose the use of
representations learned from multiple tasks for few-shot classification.
Coupled with new tricks on feature selection and voting to handle the issue of
small sample size, our direct transfer learning method offers performance
comparable to state-of-art on several benchmark datasets.
- Abstract(参考訳): いくつかのラベル付き例を使って、新しいオブジェクトカテゴリを適切に分類することを目的としている。
他のモデルから特徴表現を転送することは、数少ない分類問題を解決するための一般的なアプローチである。
本研究は,MAMLから学習した表現,教師付き分類,いくつかの共通自己教師型タスクを含む,数発の分類のための様々な特徴表現の体系的研究を行う。
より複雑なタスクからの学習は、数ショットの分類においてより良い表現を与える傾向にあり、複数のタスクから学習した表現を用いて数ショットの分類を行う。
小さなサンプルサイズの問題に対処する機能選択と投票の新たなトリックと組み合わせて、我々のダイレクトトランスファー学習手法は、いくつかのベンチマークデータセットの最先端に匹敵するパフォーマンスを提供する。
関連論文リスト
- Preview-based Category Contrastive Learning for Knowledge Distillation [53.551002781828146]
知識蒸留(PCKD)のための新しい予見型カテゴリーコントラスト学習法を提案する。
まず、インスタンスレベルの特徴対応と、インスタンスの特徴とカテゴリ中心の関係の両方の構造的知識を蒸留する。
カテゴリ表現を明示的に最適化し、インスタンスとカテゴリの表現を明確に関連付けることができる。
論文 参考訳(メタデータ) (2024-10-18T03:31:00Z) - Investigating Self-Supervised Methods for Label-Efficient Learning [27.029542823306866]
低撮影能力のためのコントラスト学習、クラスタリング、マスク付き画像モデリングなど、さまざまな自己教師付きプレテキストタスクについて検討する。
マスク画像モデリングとクラスタリングの両方をプリテキストタスクとして含むフレームワークを導入する。
実規模データセット上でモデルをテストした場合,マルチクラス分類,マルチラベル分類,セマンティックセマンティックセグメンテーションにおける性能向上を示す。
論文 参考訳(メタデータ) (2024-06-25T10:56:03Z) - Generalization Bounds for Few-Shot Transfer Learning with Pretrained
Classifiers [26.844410679685424]
本研究では,新しいクラスに移動可能な分類の表現を基礎モデルで学習する能力について検討する。
クラス-機能-変数の崩壊の場合,新しいクラスで学習した特徴マップのわずかな誤差が小さいことを示す。
論文 参考訳(メタデータ) (2022-12-23T18:46:05Z) - ECKPN: Explicit Class Knowledge Propagation Network for Transductive
Few-shot Learning [53.09923823663554]
クラスレベルの知識は、ほんの一握りのサンプルから人間が容易に学習することができる。
本稿では,この問題に対処する明示的クラス知識伝達ネットワーク(ECKPN)を提案する。
筆者らは,4つの数ショット分類ベンチマークについて広範な実験を行い,提案したECKPNが最先端の手法よりも優れていることを示す実験結果を得た。
論文 参考訳(メタデータ) (2021-06-16T02:29:43Z) - Multi-scale Adaptive Task Attention Network for Few-Shot Learning [5.861206243996454]
少数ショット学習の目標は、ラベル付きサンプルの少ない未確認カテゴリを分類することである。
本稿では,マルチスケール適応タスク注意ネットワーク(MATANet)を提案する。
論文 参考訳(メタデータ) (2020-11-30T00:36:01Z) - Region Comparison Network for Interpretable Few-shot Image
Classification [97.97902360117368]
新しいクラスのモデルをトレーニングするために、ラベル付きサンプルの限られた数だけを効果的に活用するための画像分類が提案されている。
本研究では,領域比較ネットワーク (RCN) と呼ばれる距離学習に基づく手法を提案する。
また,タスクのレベルからカテゴリへの解釈可能性の一般化も提案する。
論文 参考訳(メタデータ) (2020-09-08T07:29:05Z) - Few-shot Classification via Adaptive Attention [93.06105498633492]
ごく少数の参照サンプルに基づいて,クエリサンプル表現を最適化し,高速に適応する新しい数ショット学習手法を提案する。
実験で実証したように,提案モデルでは,様々なベンチマーク数ショット分類と微粒化認識データセットを用いて,最先端の分類結果を達成している。
論文 参考訳(メタデータ) (2020-08-06T05:52:59Z) - A Few-Shot Sequential Approach for Object Counting [63.82757025821265]
画像中のオブジェクトに逐次出席するクラスアテンション機構を導入し,それらの特徴を抽出する。
提案手法は点レベルのアノテーションに基づいて訓練され,モデルのクラス依存的・クラス依存的側面を乱す新しい損失関数を用いる。
本稿では,FSODやMS COCOなど,さまざまなオブジェクトカウント/検出データセットについて報告する。
論文 参考訳(メタデータ) (2020-07-03T18:23:39Z) - Selecting Relevant Features from a Multi-domain Representation for
Few-shot Classification [91.67977602992657]
本稿では,従来の特徴適応手法よりもシンプルかつ効果的である特徴選択に基づく新しい戦略を提案する。
このような特徴の上に構築された単純な非パラメトリック分類器は高い精度を示し、訓練中に見たことのない領域に一般化する。
論文 参考訳(メタデータ) (2020-03-20T15:44:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。