Inference of gravitational field superposition from quantum measurements
- URL: http://arxiv.org/abs/2209.02214v3
- Date: Tue, 17 Oct 2023 15:39:25 GMT
- Title: Inference of gravitational field superposition from quantum measurements
- Authors: Chris Overstreet, Joseph Curti, Minjeong Kim, Peter Asenbaum, Mark A.
Kasevich, and Flaminia Giacomini
- Abstract summary: In non-relativistic quantum mechanics, the gravitational field in such experiments can be written as a superposition state.
We empirically demonstrate that alternative theories of gravity can avoid gravitational superposition states.
Proposed experiments with superposed gravitational sources would provide even stronger evidence that gravity is nonclassical.
- Score: 1.7246954941200043
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Experiments are beginning to probe the interaction of quantum particles with
gravitational fields beyond the uniform-field regime. In non-relativistic
quantum mechanics, the gravitational field in such experiments can be written
as a superposition state. We empirically demonstrate that alternative theories
of gravity can avoid gravitational superposition states only by decoupling the
gravitational field energy from the quantum particle's time evolution.
Furthermore, such theories must specify a preferred quantum reference frame in
which the equations of motion are valid. To the extent that these properties
are theoretically implausible, recent experiments provide indirect evidence
that gravity has quantum features. Proposed experiments with superposed
gravitational sources would provide even stronger evidence that gravity is
nonclassical.
Related papers
- Semiclassical gravity phenomenology under the causal-conditional quantum measurement prescription II: Heisenberg picture and apparent optical entanglement [13.04737397490371]
In quantum gravity theory, a state-dependent gravitational potential introduces nonlinearity into the state evolution.
The formalism for understanding the continuous quantum measurement process on the quantum state has been previously discussed using the Schr"odinger picture.
In this work, an equivalent formalism using the Heisenberg picture is developed and applied to the analysis of two optomechanical experiment protocols.
arXiv Detail & Related papers (2024-11-08T14:07:18Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Should we necessarily treat masses as localized when analysing tests of quantum gravity? [0.0]
Recently proposed table-top tests of quantum gravity'' involve creating, separating and recombining superpositions of masses at non-relativistic speeds.
Analyses suggest that negligible gravitational radiation is generated if the interference experiments involve sufficiently small accelerations.
arXiv Detail & Related papers (2024-05-30T22:17:08Z) - Quantum effects in gravity beyond the Newton potential from a delocalised quantum source [0.9405321764712891]
We show for the first time that gravity is not compatible with a classical description.
Experiments such as the generation of gravitationally induced entanglement between two quantum sources of gravity can be explained with the Newton potential.
arXiv Detail & Related papers (2024-02-15T19:33:04Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Detecting Gravitationally Interacting Dark Matter with Quantum Interference [47.03992469282679]
We show that there is a theoretical possibility to directly detect such particles using highly sensitive gravity-mediated quantum phase shifts.
In particular, we consider a protocol utilizing Josephson junctions.
arXiv Detail & Related papers (2023-09-15T08:22:46Z) - Decoherence of a composite particle induced by a weak quantized
gravitational field [0.0]
We study the decoherence of a quantum system induced by the quantized gravitational field and by its own quantum nature.
Our results may be important in providing a better understanding of many phenomena like the decoherence induced by the gravitational time-dilation.
arXiv Detail & Related papers (2023-08-14T20:49:16Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Does the Universe have its own mass? [62.997667081978825]
The mass of the universe is a distribution of non-zero values of gravitational constraints.
A formulation of the Euclidean quantum theory of gravity is also proposed to determine the initial state.
Being unrelated to ordinary matter, the distribution of its own mass affects the geometry of space.
arXiv Detail & Related papers (2022-12-23T22:01:32Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Can we detect the quantum nature of weak gravitational fields? [0.0]
An experimental answer to the question of the quantization of gravity is of renewed interest in the era of gravitational wave detectors.
We review and investigate an important subset of quantum gravity, detecting quantum signatures of weak gravitational fields in table-top experiments and interferometers.
arXiv Detail & Related papers (2021-10-06T07:21:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.