Controlled quantum teleportation between discrete and continuous
physical systems
- URL: http://arxiv.org/abs/2209.02460v2
- Date: Tue, 20 Dec 2022 08:58:32 GMT
- Title: Controlled quantum teleportation between discrete and continuous
physical systems
- Authors: M. El Kirdi, A. Slaoui, N. Ikken, M. Daoud and R. Ahl Laamara
- Abstract summary: Quantum teleportation of an unknown state based on the interaction between discrete-valued states (DV) and continuous-valued states (CV)
We consider the problem of controlled quantum teleportation of an amplitude-matched CV qubit encoded by a coherent state of a varied phase as a superposition of the vacuum- and single-photon optical states among two distant partners Alice and Bob.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Quantum teleportation of an unknown state basing on the interaction between
discrete-valued states (DV) and continuous-valued states (CV) presented a
particular challenge in quantum technologies. Here we consider the problem of
controlled quantum teleportation of an amplitude-matched CV qubit, encoded by a
coherent state of a varied phase as a superposition of the vacuum- and
single-photon optical states among two distant partners Alice and Bob, with the
consent of controller, Charlie. To achieve this task, we use an hybrid
tripartite entangled state (interaction between the discrete and continuous
variables states) as the quantum resource where the coherent part belongs to
Alice, while the single-photon belongs to Bob and Charlie and the CV qubit is
at the disposal of Alice. The discrete-continuous interaction is realized on
highly transmissive beam-splitter. We have shown that the perfectly of
teleportation fidelity depends on the phase difference between the phase of the
state to teleport and the phase of the sender's mode, we found that for a
difference which approaches 0 or $\pi$, near perfect controlled quantum
teleportation can be obtained in terms of the fidelity and independently of the
amplitude $\alpha$ and the squeezing parameter $\zeta$. Experimentally, this
proposed scheme has been implemented using linear optical components such as
beam splitter, phase shifters and photon counters.
Related papers
- Quantum teleportation between a continuous-variable optical qumode and a discrete-variable solid-state qubit [12.102621653528027]
We propose a scheme to teleport a continuous variable optical qubit, encoded in an optical qumode, onto a discrete variable solid-state qubit, associated with a single nitrogen-vacancy center spin in diamond, via a hybrid entanglement.
We find that the average teleportation fidelity can still exceed the classical limit, enabling substantial teleportation distances under realistic experimental conditions.
arXiv Detail & Related papers (2024-06-27T09:20:09Z) - Quantum teleportation of a genuine vacuum-one-photon qubit generated via
a quantum dot source [0.0]
We exploit coherent control of a resonantly excited semiconductor quantum dot in a micro-cavity to teleport genuine vacuum-one photon states.
Our results may disclose new potentialities of quantum dot single-photon sources for quantum information applications.
arXiv Detail & Related papers (2023-10-31T14:59:39Z) - Bidirectional quantum teleportation of even and odd coherent states
through the multipartite Glauber coherent state: Theory and implementation [0.0]
We present a quantum teleportation protocol that enables even and odd coherent states to be transmitted and reconstructed over arbitrary distances.
We use the multipartite Glauber coherent state as a quantum resource linking distant partners Alice and Bob.
We show that the choice of the pre-shared quantum channel has a critical role in achieving high BQT efficiency.
arXiv Detail & Related papers (2023-06-01T09:55:21Z) - Improving the probabilistic quantum teleportation efficiency of
arbitrary superposed coherent state using multipartite even and odd j-spin
coherent states as resource [0.0]
Quantum teleportation is one of the most important techniques for quantum information secure transmission.
We provide a new probabilistic teleportation scheme for arbitrary superposed coherent states.
We show that the perfect quantum teleportation can be done even with a non-maximally entangled state.
arXiv Detail & Related papers (2022-02-17T11:16:12Z) - Entanglement between a telecom photon and an on-demand multimode
solid-state quantum memory [52.77024349608834]
We show the first demonstration of entanglement between a telecom photon and a collective spin excitation in a multimode solid-state quantum memory.
We extend the entanglement storage in the quantum memory for up to 47.7$mu$s, which could allow for the distribution of entanglement between quantum nodes separated by distances of up to 10 km.
arXiv Detail & Related papers (2021-06-09T13:59:26Z) - Controlled bi-directional quantum teleportation of superposed coherent
state using five qubit cluster-type entangled coherent state as a resource [0.0]
We consider the problem of bi-directional controlled quantum teleportation of information encoded in phase opposite coherent state among two distant partners Alice and Bob.
We have shown that for moderately large coherent amplitude, near-perfect bi-directional controlled teleportation can be obtained in terms of the average fidelity of teleportation.
arXiv Detail & Related papers (2021-05-02T16:12:21Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z) - Quantum teleportation with hybrid entangled resources prepared from
heralded quantum states [68.8204255655161]
We propose the generation of a hybrid entangled resource (HER)
The work includes a discussion about the fidelity dependence on the geometrical properties of the medium through which the HER is generated.
No spectral filtering is employed in the heralding process, which emphasizes the feasibility of this scheme without compromising photon flux.
arXiv Detail & Related papers (2020-02-07T21:20:50Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.