Controlled bi-directional quantum teleportation of superposed coherent
state using five qubit cluster-type entangled coherent state as a resource
- URL: http://arxiv.org/abs/2105.00501v2
- Date: Tue, 14 Dec 2021 09:01:17 GMT
- Title: Controlled bi-directional quantum teleportation of superposed coherent
state using five qubit cluster-type entangled coherent state as a resource
- Authors: Ravi Kamal Pandey, Phool Singh Yadav, Ranjana Prakash, Hari Prakash
- Abstract summary: We consider the problem of bi-directional controlled quantum teleportation of information encoded in phase opposite coherent state among two distant partners Alice and Bob.
We have shown that for moderately large coherent amplitude, near-perfect bi-directional controlled teleportation can be obtained in terms of the average fidelity of teleportation.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the problem of bi-directional controlled quantum teleportation of
information encoded in phase opposite coherent state among two distant partners
Alice and Bob, with the consent of controller, Charlie. We use five-mode
cluster-type entangled coherent state as the quantum resource to achieve this
task. The scheme uses linear optical devices such as beam splitter, phase
shifters, and photon counters. We have shown that for moderately large coherent
amplitude, near-perfect bi-directional controlled teleportation can be obtained
in terms of the average fidelity of teleportation.
Related papers
- Deterministic generation of a 20-qubit two-dimensional photonic cluster state [87.34681687753141]
We present a device capable of emitting large-scale entangled microwave photonic states in a two dimensional ladder structure.
By interleaving two-qubit gates with controlled photon emission, we generate 2 x n grids of time- and frequency-multiplexed cluster states of itinerant microwave photons.
We measure a signature of localizable entanglement across up to 20 photonic qubits.
arXiv Detail & Related papers (2024-09-10T16:25:24Z) - Quantum teleportation between a continuous-variable optical qumode and a discrete-variable solid-state qubit [12.102621653528027]
We propose a scheme to teleport a continuous variable optical qubit, encoded in an optical qumode, onto a discrete variable solid-state qubit, associated with a single nitrogen-vacancy center spin in diamond, via a hybrid entanglement.
We find that the average teleportation fidelity can still exceed the classical limit, enabling substantial teleportation distances under realistic experimental conditions.
arXiv Detail & Related papers (2024-06-27T09:20:09Z) - Bidirectional quantum teleportation of even and odd coherent states
through the multipartite Glauber coherent state: Theory and implementation [0.0]
We present a quantum teleportation protocol that enables even and odd coherent states to be transmitted and reconstructed over arbitrary distances.
We use the multipartite Glauber coherent state as a quantum resource linking distant partners Alice and Bob.
We show that the choice of the pre-shared quantum channel has a critical role in achieving high BQT efficiency.
arXiv Detail & Related papers (2023-06-01T09:55:21Z) - Controlled quantum teleportation between discrete and continuous
physical systems [0.0]
Quantum teleportation of an unknown state based on the interaction between discrete-valued states (DV) and continuous-valued states (CV)
We consider the problem of controlled quantum teleportation of an amplitude-matched CV qubit encoded by a coherent state of a varied phase as a superposition of the vacuum- and single-photon optical states among two distant partners Alice and Bob.
arXiv Detail & Related papers (2022-09-06T12:58:39Z) - Optimal quantum control via genetic algorithms for quantum state
engineering in driven-resonator mediated networks [68.8204255655161]
We employ a machine learning-enabled approach to quantum state engineering based on evolutionary algorithms.
We consider a network of qubits -- encoded in the states of artificial atoms with no direct coupling -- interacting via a common single-mode driven microwave resonator.
We observe high quantum fidelities and resilience to noise, despite the algorithm being trained in the ideal noise-free setting.
arXiv Detail & Related papers (2022-06-29T14:34:00Z) - An Optimized Bidirectional Quantum Teleportation Scheme with the use of
Bell states [0.0]
Bidirectional quantum teleportation scheme is a two-way quantum communication process.
In this paper, we have designed an optimal scheme for bidirectional quantum teleportation scheme.
arXiv Detail & Related papers (2021-12-08T08:17:59Z) - Telecom-heralded entanglement between remote multimode solid-state
quantum memories [55.41644538483948]
Future quantum networks will enable the distribution of entanglement between distant locations and allow applications in quantum communication, quantum sensing and distributed quantum computation.
Here we report the demonstration of heralded entanglement between two spatially separated quantum nodes, where the entanglement is stored in multimode solid-state quantum memories.
We also show that the generated entanglement is robust against loss in the heralding path, and demonstrate temporally multiplexed operation, with 62 temporal modes.
arXiv Detail & Related papers (2021-01-13T14:31:54Z) - Maximizing Post-selected Quantum Correlations from Classical
Interference in a Multi-core Fiber Beamsplitter [0.0]
We study fourth-order interference in novel $4 times 4$ multi-port beam splitters built within multi-core optical fibers.
We show that quantum correlations can be maximized by controlling the intensity ratio between the two input weak coherent states.
arXiv Detail & Related papers (2021-01-11T20:10:51Z) - Entanglement transfer, accumulation and retrieval via quantum-walk-based
qubit-qudit dynamics [50.591267188664666]
Generation and control of quantum correlations in high-dimensional systems is a major challenge in the present landscape of quantum technologies.
We propose a protocol that is able to attain entangled states of $d$-dimensional systems through a quantum-walk-based it transfer & accumulate mechanism.
In particular, we illustrate a possible photonic implementation where the information is encoded in the orbital angular momentum and polarization degrees of freedom of single photons.
arXiv Detail & Related papers (2020-10-14T14:33:34Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Teleporting quantum information encoded in fermionic modes [62.997667081978825]
We consider teleportation of quantum information encoded in modes of a fermionic field.
In particular, one is forced to distinguish between single-mode entanglement swapping, and qubit teleportation with or without authentication.
arXiv Detail & Related papers (2020-02-19T14:15:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.