論文の概要: Generalisation under gradient descent via deterministic PAC-Bayes
- arxiv url: http://arxiv.org/abs/2209.02525v3
- Date: Tue, 4 Apr 2023 18:05:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 16:25:55.527346
- Title: Generalisation under gradient descent via deterministic PAC-Bayes
- Title(参考訳): 決定論的pac-bayesによる勾配降下下の一般化
- Authors: Eugenio Clerico and Tyler Farghly and George Deligiannidis and
Benjamin Guedj and Arnaud Doucet
- Abstract要約: 我々は、降下勾配法や連続勾配流で訓練されたモデルに対して、分解されたPAC-ベイジアン一般化境界を確立する。
我々の境界は初期分布の密度によって完全に計算可能である。
我々のフレームワークは、様々な反復最適化アルゴリズムに適用可能であることを示す。
- 参考スコア(独自算出の注目度): 28.678437985358915
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish disintegrated PAC-Bayesian generalisation bounds for models
trained with gradient descent methods or continuous gradient flows. Contrary to
standard practice in the PAC-Bayesian setting, our result applies to
optimisation algorithms that are deterministic, without requiring any
de-randomisation step. Our bounds are fully computable, depending on the
density of the initial distribution and the Hessian of the training objective
over the trajectory. We show that our framework can be applied to a variety of
iterative optimisation algorithms, including stochastic gradient descent (SGD),
momentum-based schemes, and damped Hamiltonian dynamics.
- Abstract(参考訳): 勾配降下法や連続勾配流で訓練されたモデルに対して、分解されたpac-ベイズ一般化境界を確立する。
PAC-Bayesian設定の標準的な実践とは対照的に、決定論的アルゴリズムは非ランダム化ステップを必要としない。
私たちの境界は、初期分布の密度と軌道上の訓練目標のヘシアンに依存する、完全に計算可能である。
本稿では,確率勾配降下(SGD),運動量に基づくスキーム,減衰ハミルトン力学など,様々な反復最適化アルゴリズムに適用可能であることを示す。
関連論文リスト
- A Simulation-Free Deep Learning Approach to Stochastic Optimal Control [12.699529713351287]
最適制御(SOC)における一般問題の解法のためのシミュレーションフリーアルゴリズムを提案する。
既存の手法とは異なり、我々の手法は随伴問題の解を必要としない。
論文 参考訳(メタデータ) (2024-10-07T16:16:53Z) - Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Differentially Private Optimization with Sparse Gradients [60.853074897282625]
微分プライベート(DP)最適化問題を個人勾配の空間性の下で検討する。
これに基づいて、スパース勾配の凸最適化にほぼ最適な速度で純粋および近似DPアルゴリズムを得る。
論文 参考訳(メタデータ) (2024-04-16T20:01:10Z) - FastPart: Over-Parameterized Stochastic Gradient Descent for Sparse
optimisation on Measures [1.9950682531209156]
本稿では,コニックパーティクルグラディエントDescent(CPGD)のスケーラビリティを高めるために,ランダム特徴と協調してグラディエントDescent戦略を利用する新しいアルゴリズムを提案する。
i) 降下軌道に沿った解の総変動規範は、安定を保ち、望ましくないばらつきを防止し、 (ii) 収率$mathcalO(log(K)/sqrtK)$$$K以上の大域収束保証を確立し、アルゴリズムの効率と有効性を示す; (iii) さらに、分析と確立を行う。
論文 参考訳(メタデータ) (2023-12-10T20:41:43Z) - Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent [0.3831327965422187]
本稿では,勾配降下(SGD)における適応ステップサイズに対する新しいアプローチを提案する。
我々は、勾配に対するリプシッツ定数と探索方向の局所的分散の概念という、数値的にトレース可能な量を用いる。
論文 参考訳(メタデータ) (2023-11-28T17:03:56Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sample (AIS) と関連するアルゴリズムは、限界推定のための非常に効果的なツールである。
差別性は、目的として限界確率を最適化する可能性を認めるため、望ましい性質である。
我々はメトロポリス・ハスティングスのステップを放棄して微分可能アルゴリズムを提案し、ミニバッチ計算をさらに解き放つ。
論文 参考訳(メタデータ) (2021-07-21T17:10:14Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Self-Tuning Stochastic Optimization with Curvature-Aware Gradient
Filtering [53.523517926927894]
サンプルごとのHessian-vector積と勾配を用いて、自己チューニングの二次構造を構築する。
モデルに基づく手続きが雑音勾配設定に収束することを証明する。
これは自己チューニング二次体を構築するための興味深いステップである。
論文 参考訳(メタデータ) (2020-11-09T22:07:30Z) - GTAdam: Gradient Tracking with Adaptive Momentum for Distributed Online
Optimization [4.103281325880475]
本稿では、中央コーディネータを使わずに、局所的な計算と通信によって、オンライン最適化問題を分散的に解決することを目的とした、計算機エージェントのネットワークを扱う。
本稿では,適応運動量推定法(GTAdam)を用いた勾配追従法と,勾配の1次および2次運動量推定法を組み合わせた勾配追従法を提案する。
マルチエージェント学習によるこれらの数値実験では、GTAdamは最先端の分散最適化手法よりも優れている。
論文 参考訳(メタデータ) (2020-09-03T15:20:21Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
我々は、(離散時間)リアプノフ安定性理論が、必ずしも勾配ベースではない最適化アルゴリズムの分析(および潜在的な設計)において、いかに強力なツールとして役立つかを示す。
本稿では,不完全データベイズフレームワークにおけるパラメータ推定を,MAP-EM (maximum a reari expectation-maximization) と呼ばれる一般的な最適化アルゴリズムを用いて行うことに着目したML問題について述べる。
高速収束(線形あるいは二次的)が達成され,S&Cアプローチを使わずに発表することが困難であった可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-23T01:34:18Z) - Dynamical mean-field theory for stochastic gradient descent in Gaussian
mixture classification [25.898873960635534]
高次元景観を分類する単一層ニューラルネットワークにおける勾配降下(SGD)の閉学習ダイナミクスを解析する。
連続次元勾配流に拡張可能なプロトタイププロセスを定義する。
フルバッチ限界では、標準勾配流を回復する。
論文 参考訳(メタデータ) (2020-06-10T22:49:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。