論文の概要: Dynamical mean-field theory for stochastic gradient descent in Gaussian
mixture classification
- arxiv url: http://arxiv.org/abs/2006.06098v2
- Date: Tue, 9 Nov 2021 13:33:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-23 05:34:12.056757
- Title: Dynamical mean-field theory for stochastic gradient descent in Gaussian
mixture classification
- Title(参考訳): ガウス混合分類における確率勾配勾配の動的平均場理論
- Authors: Francesca Mignacco, Florent Krzakala, Pierfrancesco Urbani, Lenka
Zdeborov\'a
- Abstract要約: 高次元景観を分類する単一層ニューラルネットワークにおける勾配降下(SGD)の閉学習ダイナミクスを解析する。
連続次元勾配流に拡張可能なプロトタイププロセスを定義する。
フルバッチ限界では、標準勾配流を回復する。
- 参考スコア(独自算出の注目度): 25.898873960635534
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We analyze in a closed form the learning dynamics of stochastic gradient
descent (SGD) for a single-layer neural network classifying a high-dimensional
Gaussian mixture where each cluster is assigned one of two labels. This problem
provides a prototype of a non-convex loss landscape with interpolating regimes
and a large generalization gap. We define a particular stochastic process for
which SGD can be extended to a continuous-time limit that we call stochastic
gradient flow. In the full-batch limit, we recover the standard gradient flow.
We apply dynamical mean-field theory from statistical physics to track the
dynamics of the algorithm in the high-dimensional limit via a self-consistent
stochastic process. We explore the performance of the algorithm as a function
of the control parameters shedding light on how it navigates the loss
landscape.
- Abstract(参考訳): 各クラスタに2つのラベルの1つを割り当てる高次元ガウス混合を分類する単層ニューラルネットワークの確率的勾配降下(sgd)の学習ダイナミクスを閉じた形で解析する。
この問題は、補間状態と大きな一般化ギャップを持つ非凸損失ランドスケープのプロトタイプを提供する。
我々は、sgd を確率的勾配流と呼ぶ連続時間限界まで拡張できる特定の確率過程を定義する。
全バッチ制限では、標準的な勾配フローを回復する。
統計物理学からの動的平均場理論を適用し、自己整合確率過程を通じて高次元極限におけるアルゴリズムのダイナミクスを追跡する。
本研究では,制御パラメータの関数としてアルゴリズムの性能を調べ,損失景観のナビゲートに光を当てる。
関連論文リスト
- Flattened one-bit stochastic gradient descent: compressed distributed optimization with controlled variance [55.01966743652196]
パラメータ・サーバ・フレームワークにおける圧縮勾配通信を用いた分散勾配降下(SGD)のための新しいアルゴリズムを提案する。
平坦な1ビット勾配勾配勾配法(FO-SGD)は2つの単純なアルゴリズムの考え方に依存している。
論文 参考訳(メタデータ) (2024-05-17T21:17:27Z) - Robust Approximate Sampling via Stochastic Gradient Barker Dynamics [0.0]
本稿では,Langevin に基づくサンプリングアルゴリズムの頑健な代替である Barker gradient dynamics (SGBD) アルゴリズムを勾配フレームワークに導入する。
本稿では,バーカー遷移機構に対する勾配の影響を特徴付けるとともに,勾配雑音による誤差を除去するバイアス補正版を開発する。
論文 参考訳(メタデータ) (2024-05-14T23:47:02Z) - Adaptive Federated Learning Over the Air [108.62635460744109]
オーバー・ザ・エア・モデル・トレーニングの枠組みの中で,適応勾配法,特にAdaGradとAdamの連合バージョンを提案する。
解析の結果,AdaGrad に基づくトレーニングアルゴリズムは $mathcalO(ln(T) / T 1 - frac1alpha の速度で定常点に収束することがわかった。
論文 参考訳(メタデータ) (2024-03-11T09:10:37Z) - Stochastic Gradient Descent for Gaussian Processes Done Right [86.83678041846971]
emphdone right -- 最適化とカーネルコミュニティからの具体的な洞察を使用するという意味で -- が、勾配降下は非常に効果的であることを示している。
本稿では,直感的に設計を記述し,設計選択について説明する。
本手法は,分子結合親和性予測のための最先端グラフニューラルネットワークと同程度にガウス過程の回帰を配置する。
論文 参考訳(メタデータ) (2023-10-31T16:15:13Z) - Convergence of mean-field Langevin dynamics: Time and space
discretization, stochastic gradient, and variance reduction [49.66486092259376]
平均場ランゲヴィンダイナミクス(英: mean-field Langevin dynamics、MFLD)は、分布依存のドリフトを含むランゲヴィン力学の非線形一般化である。
近年の研究では、MFLDは測度空間で機能するエントロピー規則化された凸関数を地球規模で最小化することが示されている。
有限粒子近似,時間分散,勾配近似による誤差を考慮し,MFLDのカオスの均一時間伝播を示す枠組みを提供する。
論文 参考訳(メタデータ) (2023-06-12T16:28:11Z) - Rigorous dynamical mean field theory for stochastic gradient descent
methods [17.90683687731009]
一階勾配法の一家系の正確な高次元に対する閉形式方程式を証明した。
これには勾配降下(SGD)やネステロフ加速度などの広く使われているアルゴリズムが含まれる。
論文 参考訳(メタデータ) (2022-10-12T21:10:55Z) - Improved Overparametrization Bounds for Global Convergence of Stochastic
Gradient Descent for Shallow Neural Networks [1.14219428942199]
本研究では,1つの隠れ層フィードフォワードニューラルネットワークのクラスに対して,勾配降下アルゴリズムのグローバル収束に必要な過パラメトリゼーション境界について検討する。
論文 参考訳(メタデータ) (2022-01-28T11:30:06Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Stochasticity helps to navigate rough landscapes: comparing
gradient-descent-based algorithms in the phase retrieval problem [8.164433158925593]
本研究では,動的降下,永続勾配,ランジュバン景観降下などの解析ベースアルゴリズムについて検討する。
統計的軌道からの統計場理論をアルゴリズムにフルタイムで適用し、開始時と大規模なシステムサイズで適用します。
論文 参考訳(メタデータ) (2021-03-08T17:06:18Z) - A Contour Stochastic Gradient Langevin Dynamics Algorithm for
Simulations of Multi-modal Distributions [17.14287157979558]
ビッグデータ統計学の学習のための適応重み付き勾配ランゲヴィン力学(SGLD)を提案する。
提案アルゴリズムは、CIFAR100を含むベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-10-19T19:20:47Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。