論文の概要: Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent
- arxiv url: http://arxiv.org/abs/2311.16956v2
- Date: Wed, 18 Sep 2024 15:47:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-19 23:46:22.348475
- Title: Adaptive Step Sizes for Preconditioned Stochastic Gradient Descent
- Title(参考訳): 事前条件付き確率勾配ディフレッシュのための適応ステップサイズ
- Authors: Frederik Köhne, Leonie Kreis, Anton Schiela, Roland Herzog,
- Abstract要約: 本稿では,勾配降下(SGD)における適応ステップサイズに対する新しいアプローチを提案する。
我々は、勾配に対するリプシッツ定数と探索方向の局所的分散の概念という、数値的にトレース可能な量を用いる。
- 参考スコア(独自算出の注目度): 0.3831327965422187
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper proposes a novel approach to adaptive step sizes in stochastic gradient descent (SGD) by utilizing quantities that we have identified as numerically traceable -- the Lipschitz constant for gradients and a concept of the local variance in search directions. Our findings yield a nearly hyperparameter-free algorithm for stochastic optimization, which has provable convergence properties and exhibits truly problem adaptive behavior on classical image classification tasks. Our framework is set in a general Hilbert space and thus enables the potential inclusion of a preconditioner through the choice of the inner product.
- Abstract(参考訳): 本稿では,勾配のリプシッツ定数と探索方向の局所的分散の概念を用いて,確率勾配降下(SGD)の適応的なステップサイズを求める手法を提案する。
提案手法は,従来の画像分類課題に対して,精度の高い収束特性を持ち,真に問題適応的な挙動を示す確率最適化のための,ほぼハイパーパラメータフリーなアルゴリズムを導出する。
我々のフレームワークは一般ヒルベルト空間に設定されており、内部積の選択によりプレコンディショナーの潜在的な包含を可能にする。
関連論文リスト
- Convergence Analysis of Adaptive Gradient Methods under Refined Smoothness and Noise Assumptions [18.47705532817026]
AdaGradは特定の条件下では$d$でSGDより優れていることを示す。
これを動機として、目的物の滑らかさ構造と勾配のばらつきを仮定する。
論文 参考訳(メタデータ) (2024-06-07T02:55:57Z) - Diagonalisation SGD: Fast & Convergent SGD for Non-Differentiable Models
via Reparameterisation and Smoothing [1.6114012813668932]
微分不可能な関数を断片的に定義するための単純なフレームワークを導入し,スムース化を得るための体系的なアプローチを提案する。
我々の主な貢献は SGD の新たな変種 Diagonalisation Gradient Descent であり、滑らかな近似の精度を徐々に向上させる。
我々のアプローチは単純で高速で安定であり、作業正規化分散の桁数削減を実現している。
論文 参考訳(メタデータ) (2024-02-19T00:43:22Z) - Stochastic Marginal Likelihood Gradients using Neural Tangent Kernels [78.6096486885658]
線形化されたラプラス近似に下界を導入する。
これらの境界は漸進的な最適化が可能であり、推定精度と計算複雑性とのトレードオフを可能にする。
論文 参考訳(メタデータ) (2023-06-06T19:02:57Z) - Parameter-free projected gradient descent [0.0]
我々は、射影勾配 Descent (PGD) を用いて、閉凸集合上の凸関数を最小化する問題を考える。
本稿では,AdaGradのパラメータフリーバージョンを提案する。これは初期化と最適化の距離に適応し,下位段階の平方ノルムの和に適応する。
提案アルゴリズムはプロジェクションステップを処理でき、リスタートを伴わず、従来のPGDと比較して軌道に沿ってリウィーディングや追加評価を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T07:22:44Z) - The Power of Adaptivity in SGD: Self-Tuning Step Sizes with Unbounded
Gradients and Affine Variance [46.15915820243487]
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
AdaGrad-Normは$mathcalOleftのオーダー最適収束を示す。
論文 参考訳(メタデータ) (2022-02-11T17:37:54Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - AI-SARAH: Adaptive and Implicit Stochastic Recursive Gradient Methods [7.486132958737807]
適応性に対する暗黙的アプローチによる適応分散低減手法を提案する。
有限サム最小化問題に対する収束保証を提供し,局所幾何が許せばサラよりも高速に収束できることを示す。
このアルゴリズムはステップサイズを暗黙的に計算し、関数の局所リプシッツ滑らかさを効率的に推定する。
論文 参考訳(メタデータ) (2021-02-19T01:17:15Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
この作業は、一階情報を必要としない零次最適化(ZO)の反復である。
座標重要度サンプリングにおける優雅な設計により,ZO最適化法は複雑度と関数クエリコストの両面において効率的であることを示す。
論文 参考訳(メタデータ) (2020-12-21T17:29:58Z) - Convergence of adaptive algorithms for weakly convex constrained
optimization [59.36386973876765]
モローエンベロープの勾配のノルムに対して$mathcaltilde O(t-1/4)$収束率を証明する。
我々の分析では、最小バッチサイズが1ドル、定数が1位と2位のモーメントパラメータが1ドル、そしておそらくスムーズな最適化ドメインで機能する。
論文 参考訳(メタデータ) (2020-06-11T17:43:19Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z) - On the Convergence of Adaptive Gradient Methods for Nonconvex Optimization [80.03647903934723]
我々は、勾配収束法を期待する適応勾配法を証明した。
解析では、非理解勾配境界の最適化において、より適応的な勾配法に光を当てた。
論文 参考訳(メタデータ) (2018-08-16T20:25:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。