Algorithmic Learning Foundations for Common Law
- URL: http://arxiv.org/abs/2209.02866v2
- Date: Thu, 8 Sep 2022 20:30:45 GMT
- Title: Algorithmic Learning Foundations for Common Law
- Authors: Jason D. Hartline, Daniel W. Linna Jr., Liren Shan, Alex Tang
- Abstract summary: This paper looks at a common law legal system as a learning algorithm, models specific features of legal proceedings, and asks whether this system learns efficiently.
A particular feature of our model is explicitly viewing various aspects of court proceedings as learning algorithms.
- Score: 5.961705913076256
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper looks at a common law legal system as a learning algorithm, models
specific features of legal proceedings, and asks whether this system learns
efficiently. A particular feature of our model is explicitly viewing various
aspects of court proceedings as learning algorithms. This viewpoint enables
directly pointing out that when the costs of going to court are not
commensurate with the benefits of going to court, there is a failure of
learning and inaccurate outcomes will persist in cases that settle.
Specifically, cases are brought to court at an insufficient rate. On the other
hand, when individuals can be compelled or incentivized to bring their cases to
court, the system can learn and inaccuracy vanishes over time.
Related papers
- RLJP: Legal Judgment Prediction via First-Order Logic Rule-enhanced with Large Language Models [58.69183479148083]
Legal Judgment Prediction (LJP) is a pivotal task in legal AI.<n>Existing LJP models integrate judicial precedents and legal knowledge for high performance.<n>But they neglect legal reasoning logic, a critical component of legal judgments requiring rigorous logical analysis.<n>This paper proposes a rule-enhanced legal judgment prediction framework based on first-order logic (FOL) formalism and comparative learning (CL)
arXiv Detail & Related papers (2025-05-27T14:50:21Z) - AnnoCaseLaw: A Richly-Annotated Dataset For Benchmarking Explainable Legal Judgment Prediction [56.797874973414636]
AnnoCaseLaw is a first-of-its-kind dataset of 471 meticulously annotated U.S. Appeals Court negligence cases.
Our dataset lays the groundwork for more human-aligned, explainable Legal Judgment Prediction models.
Results demonstrate that LJP remains a formidable task, with application of legal precedent proving particularly difficult.
arXiv Detail & Related papers (2025-02-28T19:14:48Z) - Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings [0.0]
This study develops a deep learning-based predictive system for court sentence lengths.
Our model, combining CNN and BiLSTM with attention mechanism, achieved an R-squared score of 0.5893.
arXiv Detail & Related papers (2024-10-26T07:07:48Z) - End-to-End Optimization and Learning of Fair Court Schedules [46.76273076646004]
Criminal courts across the United States handle millions of cases every year.
Defendants' scheduling preferences often take the least priority.
This paper proposes a joint optimization and learning framework that combines machine learning models trained end-to-end with efficient matching algorithms.
arXiv Detail & Related papers (2024-10-22T20:40:53Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - The Ethics of Automating Legal Actors [58.81546227716182]
We argue that automating the role of the judge raises difficult ethical challenges, in particular for common law legal systems.
Our argument follows from the social role of the judge in actively shaping the law, rather than merely applying it.
Even in the case the models could achieve human-level capabilities, there would still be remaining ethical concerns inherent in the automation of the legal process.
arXiv Detail & Related papers (2023-12-01T13:48:46Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
We introduce a novel dataset from real courtrooms to predict the legal judgment in a reasonably encyclopedic manner.
An extensive set of experiments with a large civil trial data set shows that the proposed model can more accurately characterize the interactions among claims, fact and debate for legal judgment prediction.
arXiv Detail & Related papers (2021-07-12T04:27:14Z) - What About the Precedent: An Information-Theoretic Analysis of Common
Law [64.49276556192073]
In common law, the outcome of a new case is determined mostly by precedent cases, rather than existing statutes.
We are the first to approach this question by comparing two longstanding jurisprudential views.
We find that the precedent's arguments share 0.38 nats of information with the case's outcome, whereas precedent's facts only share 0.18 nats of information.
arXiv Detail & Related papers (2021-04-25T11:20:09Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.