Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings
- URL: http://arxiv.org/abs/2410.20104v1
- Date: Sat, 26 Oct 2024 07:07:48 GMT
- Title: Hybrid Deep Learning for Legal Text Analysis: Predicting Punishment Durations in Indonesian Court Rulings
- Authors: Muhammad Amien Ibrahim, Alif Tri Handoyo, Maria Susan Anggreainy,
- Abstract summary: This study develops a deep learning-based predictive system for court sentence lengths.
Our model, combining CNN and BiLSTM with attention mechanism, achieved an R-squared score of 0.5893.
- Score: 0.0
- License:
- Abstract: Limited public understanding of legal processes and inconsistent verdicts in the Indonesian court system led to widespread dissatisfaction and increased stress on judges. This study addresses these issues by developing a deep learning-based predictive system for court sentence lengths. Our hybrid model, combining CNN and BiLSTM with attention mechanism, achieved an R-squared score of 0.5893, effectively capturing both local patterns and long-term dependencies in legal texts. While document summarization proved ineffective, using only the top 30% most frequent tokens increased prediction performance, suggesting that focusing on core legal terminology balances information retention and computational efficiency. We also implemented a modified text normalization process, addressing common errors like misspellings and incorrectly merged words, which significantly improved the model's performance. These findings have important implications for automating legal document processing, aiding both professionals and the public in understanding court judgments. By leveraging advanced NLP techniques, this research contributes to enhancing transparency and accessibility in the Indonesian legal system, paving the way for more consistent and comprehensible legal decisions.
Related papers
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
We introduce JudgeRank, a novel agentic reranker that emulates human cognitive processes when assessing document relevance.
We evaluate JudgeRank on the reasoning-intensive BRIGHT benchmark, demonstrating substantial performance improvements over first-stage retrieval methods.
In addition, JudgeRank performs on par with fine-tuned state-of-the-art rerankers on the popular BEIR benchmark, validating its zero-shot generalization capability.
arXiv Detail & Related papers (2024-10-31T18:43:12Z) - Editable Fairness: Fine-Grained Bias Mitigation in Language Models [52.66450426729818]
We propose a novel debiasing approach, Fairness Stamp (FAST), which enables fine-grained calibration of individual social biases.
FAST surpasses state-of-the-art baselines with superior debiasing performance.
This highlights the potential of fine-grained debiasing strategies to achieve fairness in large language models.
arXiv Detail & Related papers (2024-08-07T17:14:58Z) - Enabling Discriminative Reasoning in LLMs for Legal Judgment Prediction [23.046342240176575]
We introduce the Ask-Discriminate-Predict (ADAPT) reasoning framework inspired by human reasoning.
ADAPT involves decomposing case facts, discriminating among potential charges, and predicting the final judgment.
Experiments conducted on two widely-used datasets demonstrate the superior performance of our framework in legal judgment prediction.
arXiv Detail & Related papers (2024-07-02T05:43:15Z) - Legal Judgment Reimagined: PredEx and the Rise of Intelligent AI Interpretation in Indian Courts [6.339932924789635]
textbfPrediction with textbfExplanation (textttPredEx) is the largest expert-annotated dataset for legal judgment prediction and explanation in the Indian context.
This corpus significantly enhances the training and evaluation of AI models in legal analysis.
arXiv Detail & Related papers (2024-06-06T14:57:48Z) - DELTA: Pre-train a Discriminative Encoder for Legal Case Retrieval via Structural Word Alignment [55.91429725404988]
We introduce DELTA, a discriminative model designed for legal case retrieval.
We leverage shallow decoders to create information bottlenecks, aiming to enhance the representation ability.
Our approach can outperform existing state-of-the-art methods in legal case retrieval.
arXiv Detail & Related papers (2024-03-27T10:40:14Z) - Prototype-Based Interpretability for Legal Citation Prediction [16.660004925391842]
We design the task with parallels to the thought-process of lawyers, i.e., with reference to both precedents and legislative provisions.
After initial experimental results, we refine the target citation predictions with the feedback of legal experts.
We introduce a prototype architecture to add interpretability, achieving strong performance while adhering to decision parameters used by lawyers.
arXiv Detail & Related papers (2023-05-25T21:40:58Z) - Exploiting Contrastive Learning and Numerical Evidence for Confusing
Legal Judgment Prediction [46.71918729837462]
Given the fact description text of a legal case, legal judgment prediction aims to predict the case's charge, law article and penalty term.
Previous studies fail to distinguish different classification errors with a standard cross-entropy classification loss.
We propose a moco-based supervised contrastive learning to learn distinguishable representations.
We further enhance the representation of the fact description with extracted crime amounts which are encoded by a pre-trained numeracy model.
arXiv Detail & Related papers (2022-11-15T15:53:56Z) - Legal Judgment Prediction with Multi-Stage CaseRepresentation Learning
in the Real Court Setting [25.53133777558123]
We introduce a novel dataset from real courtrooms to predict the legal judgment in a reasonably encyclopedic manner.
An extensive set of experiments with a large civil trial data set shows that the proposed model can more accurately characterize the interactions among claims, fact and debate for legal judgment prediction.
arXiv Detail & Related papers (2021-07-12T04:27:14Z) - Lawformer: A Pre-trained Language Model for Chinese Legal Long Documents [56.40163943394202]
We release the Longformer-based pre-trained language model, named as Lawformer, for Chinese legal long documents understanding.
We evaluate Lawformer on a variety of LegalAI tasks, including judgment prediction, similar case retrieval, legal reading comprehension, and legal question answering.
arXiv Detail & Related papers (2021-05-09T09:39:25Z) - Equality before the Law: Legal Judgment Consistency Analysis for
Fairness [55.91612739713396]
In this paper, we propose an evaluation metric for judgment inconsistency, Legal Inconsistency Coefficient (LInCo)
We simulate judges from different groups with legal judgment prediction (LJP) models and measure the judicial inconsistency with the disagreement of the judgment results given by LJP models trained on different groups.
We employ LInCo to explore the inconsistency in real cases and come to the following observations: (1) Both regional and gender inconsistency exist in the legal system, but gender inconsistency is much less than regional inconsistency.
arXiv Detail & Related papers (2021-03-25T14:28:00Z) - Distinguish Confusing Law Articles for Legal Judgment Prediction [30.083642130015317]
Legal Judgment Prediction (LJP) is the task of automatically predicting a law case's judgment results given a text describing its facts.
We present an end-to-end model, LADAN, to solve the task of LJP.
arXiv Detail & Related papers (2020-04-06T11:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.