Liouvillian gap and single spin-flip dynamics in the dissipative
Fermi-Hubbard model
- URL: http://arxiv.org/abs/2209.03743v3
- Date: Wed, 5 Apr 2023 02:43:46 GMT
- Title: Liouvillian gap and single spin-flip dynamics in the dissipative
Fermi-Hubbard model
- Authors: Hironobu Yoshida and Hosho Katsura
- Abstract summary: We analyze the Fermi-Hubbard model on a $d$-dimensional hypercubic lattice with two-body loss.
We also investigate the dynamics of a ferromagnetic initial state with a single spin flip.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Motivated by recent progress in cold-atom experiments, we analyze the SU($N$)
Fermi-Hubbard model on a $d$-dimensional hypercubic lattice with two-body loss.
By focusing on states near the ferromagnetic steady states, we obtain the
Liouvillian gap in closed form for any $d$ and $N$. We also investigate the
dynamics of a ferromagnetic initial state with a single spin flip both
analytically and numerically. In particular, we show that, by decreasing the
strength of the interaction and loss, the survival probability of the spin flip
exhibits a crossover from the power-law decay to the exponential decay. We
expect that our findings can be tested experimentally with ultracold
alkaline-earth-like atoms in an optical lattice.
Related papers
- Tripartite entanglement from experimental data: $B^0\to K^{*0}μ^+μ^-$ as a case study [49.1574468325115]
We develop an angular analysis based on the reconstruction of the helicity amplitudes from dedicated experimental data corresponding to the tripartite state composed by one qutrit and two qubits.
As an application of our analysis, we performed a full quantum tomography of the final state in the $B0to K*0mu+mu-$ decays using data recorded by LHCb collaboration.
arXiv Detail & Related papers (2024-09-19T18:10:14Z) - Dynamics of spin helices in the diluted one-dimensional $XX$ model [0.0]
Motivated by discrepancies between recent cold atom experiments and the associated theory, we explore the effect of immobile holes on the quantum dynamics of $x$-$z$ spin helices.
We calculate the exact spin dynamics by mapping onto a system of non-interacting fermions, averaging over the distribution of holes.
arXiv Detail & Related papers (2024-04-26T17:36:27Z) - Quantum Fluctuations Suppress the Critical Fields in BaCo$_2$(AsO$_4$)$_2$ [0.0]
BaCo$$(AsO$_4$)$$ recently emerged as a candidate host for bond-dependent (e.g. Kitaev) and third-neighbor ($J_3$) interactions.
We map out the intermediate and high-field phase diagram of BaCo$$(AsO$_4$)$ as a function of the out-of-plane magnetic field direction.
arXiv Detail & Related papers (2024-03-22T16:08:39Z) - Cooperative quantum tunneling of the magnetization in Fe-doped Li$_3$N [0.0]
The spin-reversal in dilute Li$$$(Li$_1-x$Fe$_x$)N with $x 1$ % is dominated by resonant quantum tunneling of spatially well-separated states.
We report on the effect of finite couplings between those states that give rise to cooperative, simultaneous quantum tunneling of two spins.
arXiv Detail & Related papers (2023-10-27T14:59:42Z) - Dynamics of Spin Helices in the One-Dimensional $XX$ Model [0.0]
We analytically study the dynamics of spin helices in the one-dimensional $XX$ model.
We find a separation of timescales between the in-plane and out-of-plane spin dynamics.
One of our key findings is that the spin correlation functions decay as $t-1/2$ at long time, in contrast to the experimentally observed exponential decay.
arXiv Detail & Related papers (2021-10-12T13:03:29Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Phase diagram of a distorted kagome antiferromagnet and application to
Y-kapellasite [50.591267188664666]
We reveal a rich ground state phase diagram even at the classical level.
The presented model opens a new direction in the study of kagome antiferromagnets.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Fractional quantum Hall physics and higher-order momentum correlations
in a few spinful fermionic contact-interacting ultracold atoms in rotating
traps [0.0]
This paper provides benchmark results for $N$-body spin-unresolved, as well as spin-resolved, momentum correlations measurable in time-of-flight experiments with individual particle detection.
The application of a small perturbing stirring potential induces, at the ensuing avoided crossings, formation of symmetry broken states exhibiting ordered polygonal-ring structures.
Analysis of the calculated LLL wavefunction enables a two-dimensional generalization of the Girardeau one-dimensional 'fermionization' scheme, originally invoked for mapping of bosonic-type wave functions to those of spinless fermions.
arXiv Detail & Related papers (2020-06-17T02:08:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.