How Dirac's Seminal Contributions Pave the Way for Comprehending
Nature's Deeper Designs
- URL: http://arxiv.org/abs/2209.03937v1
- Date: Thu, 28 Jul 2022 09:38:28 GMT
- Title: How Dirac's Seminal Contributions Pave the Way for Comprehending
Nature's Deeper Designs
- Authors: Mani L. Bhaumik
- Abstract summary: Examples of well-known enigmas are wave particle duality, the de Broglie hypothesis, the uncertainty principle, wave function collapse, and predictions of measurement outcomes in terms of probability instead of certainty.
Paul Dirac successfully incorporated special theory of relativity into quantum mechanics for the first time.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Credible reasons are presented to reveal that many of the lingering century
old enigmas, surrounding the behavior of at least an individual quantum
particle, can be comprehended in terms of an objectively real specific wave
function. This wave function is gleaned from the single particle
energy-momentum eigenstate offered by the theory of space filling universal
quantum fields that is an inevitable outcome of Dirac's pioneering masterpiece.
Examples of these well-known enigmas are wave particle duality, the de Broglie
hypothesis, the uncertainty principle, wave function collapse, and predictions
of measurement outcomes in terms of probability instead of certainty. Paul
Dirac successfully incorporated special theory of relativity into quantum
mechanics for the first time. This was accomplished through his ingenious use
of matrices that allowed the equations of motion to maintain the necessary
first order time derivative feature necessary for positive probability density.
The ensuing Dirac equation for the electron led to the recognition of the
mystifying quantized spin and magnetic moment as intrinsic properties in
contrast to earlier ad hoc assumptions. The solution of his relativistic
equation for the hydrogen atom produced results in perfect agreement with
experimental data available at the time. The most far reaching prediction of
the celebrated Dirac equation was the totally unexpected existence of
anti-particles, culminating in the eventual development of the quantum field
theory of the Standard Model that reveals the deepest secrets of the universe
known to date.
Related papers
- Entangled in Spacetime [0.0]
The Delayed-Choice Quantum Eraser demonstrates the relationship between quantum measurement, wave-particle duality, and the temporal ordering of observations.
By utilizing the principles of quantum superposition, entanglement, and the non-local collapse of the wave function, we seek to rationalize the counterintuitive outcomes observed in the experiment.
arXiv Detail & Related papers (2024-09-04T00:57:23Z) - Self-consistency, relativism and many-particle system [0.0]
Interrelation between concepts of self-consistency, relativism and many-particle systems is considered.
Paper shows that quantum systems with a time independent function of quasi-density probability in phase space are not capable to emit electromagnetic radiation.
arXiv Detail & Related papers (2024-04-21T08:38:40Z) - A Theory of Quantum Jumps [44.99833362998488]
We study fluorescence and the phenomenon of quantum jumps'' in idealized models of atoms coupled to the quantized electromagnetic field.
Our results amount to a derivation of the fundamental randomness in the quantum-mechanical description of microscopic systems.
arXiv Detail & Related papers (2024-04-16T11:00:46Z) - Testing trajectory-based determinism via time probability distributions [44.99833362998488]
Bohmian mechanics (BM) has inherited more predictive power than quantum mechanics (QM)
We introduce a prescription for constructing a flight-time probability distribution within generic trajectory-equipped theories.
We derive probability distributions that are unreachable by QM.
arXiv Detail & Related papers (2024-04-15T11:36:38Z) - Relaxation to quantum equilibrium and the Born rule in Nelson's
stochastic dynamics [0.1315429617442362]
Nelson's quantum mechanics provides an ideal arena to test how the Born rule is established.
For all cases, Nelson's trajectories are initially localized at a definite position.
arXiv Detail & Related papers (2023-05-06T16:10:39Z) - Partition of kinetic energy and magnetic moment in dissipative
diamagnetism [20.218184785285132]
We analyze dissipative diamagnetism, arising due to dissipative cyclotron motion in two dimensions, in the light of the quantum counterpart of energy equipartition theorem.
The expressions for kinetic energy and magnetic moment are reformulated in the context of superstatistics.
arXiv Detail & Related papers (2022-07-30T08:07:28Z) - Effect of Measurement Backaction on Quantum Clock Precision Studied with
a Superconducting Circuit [13.318874561490933]
We study the precision of a quantum clock near zero temperature.
We find an equality for the precision of the clock in each regime.
We experimentally verify that our quantum clock obeys the kinetic uncertainty relation for the precision.
arXiv Detail & Related papers (2022-07-22T12:29:34Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Path integral action in the generalized uncertainty principle framework [0.36832029288386126]
We study the path integral representation of a particle moving in an arbitrary potential using the generalized uncertainty principle (GUP)
First we work out the action of the particle in an arbitrary potential and hence find an upper bound to the velocity of a free particle.
arXiv Detail & Related papers (2021-05-10T13:17:37Z) - Countering a fundamental law of attraction with quantum wavepacket
engineering [0.0]
Bohmian mechanics was designed to give rise to predictions identical to those derived by standard quantum mechanics.
We show that this interpretation of quantum theory naturally leads to the derivation of interesting new phenomena.
Specifically, we demonstrate how the fundamental Casimir-Polder force, by which atoms are attracted to a surface, may be temporarily suppressed by utilizing a specially designed quantum potential.
arXiv Detail & Related papers (2021-01-27T13:24:43Z) - External and internal wave functions: de Broglie's double-solution
theory? [77.34726150561087]
We propose an interpretative framework for quantum mechanics corresponding to the specifications of Louis de Broglie's double-solution theory.
The principle is to decompose the evolution of a quantum system into two wave functions.
For Schr"odinger, the particles are extended and the square of the module of the (internal) wave function of an electron corresponds to the density of its charge in space.
arXiv Detail & Related papers (2020-01-13T13:41:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.