Assessing Lower Limb Strength using Internet-of-Things Enabled Chair
- URL: http://arxiv.org/abs/2209.04042v3
- Date: Tue, 27 Aug 2024 17:24:51 GMT
- Title: Assessing Lower Limb Strength using Internet-of-Things Enabled Chair
- Authors: Chelsea Yeh, Hanna Kaitlin Dy, Phillip Schodinger, Hudson Kaleb Dy,
- Abstract summary: The project seeks to measure and assess the progress of individuals by sensors attached to chairs.
Pressure sensors are attached to various locations on a chair, including but not limited to the seating area, backrest, hand, rests, and legs.
The dataset and timing information can then be fed into a machine learning model to estimate the relative strength and weakness during various phases of the movement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This project describes the application of the technologies of Machine Learning and Internet-of-Things to assess the lower limb strength of individuals undergoing rehabilitation or therapy. Specifically, it seeks to measure and assess the progress of individuals by sensors attached to chairs and processing the data through Google GPU Tensorflow CoLab. Pressure sensors are attached to various locations on a chair, including but not limited to the seating area, backrest, hand rests, and legs. Sensor data from the individual performing both sit-to-stand transition and stand-to-sit transition provides a time series dataset regarding the pressure distribution and vibratory motion on the chair. The dataset and timing information can then be fed into a machine learning model to estimate the relative strength and weakness during various phases of the movement.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data [17.604797095380114]
In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as from a wrist wearable device.
However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities.
We introduce a transfer learning framework that optimize machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting.
arXiv Detail & Related papers (2024-05-26T01:08:28Z) - HabitatDyn Dataset: Dynamic Object Detection to Kinematics Estimation [16.36110033895749]
We propose the dataset HabitatDyn, which contains both synthetic RGB videos, semantic labels, and depth information, as well as kinetics information.
HabitatDyn was created from the perspective of a mobile robot with a moving camera, and contains 30 scenes featuring six different types of moving objects with varying velocities.
arXiv Detail & Related papers (2023-04-21T09:57:35Z) - Video-based Pose-Estimation Data as Source for Transfer Learning in
Human Activity Recognition [71.91734471596433]
Human Activity Recognition (HAR) using on-body devices identifies specific human actions in unconstrained environments.
Previous works demonstrated that transfer learning is a good strategy for addressing scenarios with scarce data.
This paper proposes using datasets intended for human-pose estimation as a source for transfer learning.
arXiv Detail & Related papers (2022-12-02T18:19:36Z) - Sleep Posture One-Shot Learning Framework Using Kinematic Data
Augmentation: In-Silico and In-Vivo Case Studies [6.123523234813773]
Sleep posture is linked to several health conditions such as nocturnal cramps and more serious musculoskeletal issues.
This paper proposes a new framework for sleep posture classification based on a minimal set of joint angle measurements.
The proposed framework attained promising overall accuracy as high as 100% on synthetic data and 92.7% on real data, on par with state of the art data-hungry algorithms available in the literature.
arXiv Detail & Related papers (2022-05-22T09:06:42Z) - Posture Prediction for Healthy Sitting using a Smart Chair [0.0]
Poor sitting habits have been identified as a risk factor to musculoskeletal disorders and lower back pain.
This study builds Machine Learning models for classifying sitting posture of a person.
arXiv Detail & Related papers (2022-01-05T20:31:28Z) - MetaGraspNet: A Large-Scale Benchmark Dataset for Vision-driven Robotic
Grasping via Physics-based Metaverse Synthesis [78.26022688167133]
We present a large-scale benchmark dataset for vision-driven robotic grasping via physics-based metaverse synthesis.
The proposed dataset contains 100,000 images and 25 different object types.
We also propose a new layout-weighted performance metric alongside the dataset for evaluating object detection and segmentation performance.
arXiv Detail & Related papers (2021-12-29T17:23:24Z) - Benchmarking high-fidelity pedestrian tracking systems for research,
real-time monitoring and crowd control [55.41644538483948]
High-fidelity pedestrian tracking in real-life conditions has been an important tool in fundamental crowd dynamics research.
As this technology advances, it is becoming increasingly useful also in society.
To successfully employ pedestrian tracking techniques in research and technology, it is crucial to validate and benchmark them for accuracy.
We present and discuss a benchmark suite, towards an open standard in the community, for privacy-respectful pedestrian tracking techniques.
arXiv Detail & Related papers (2021-08-26T11:45:26Z) - Synthesizing Skeletal Motion and Physiological Signals as a Function of
a Virtual Human's Actions and Emotions [10.59409233835301]
We develop for the first time a system consisting of computational models for synchronously skeletal motion, electrocardiogram, blood pressure, respiration, and skin conductance signals.
The proposed framework is modular and allows the flexibility to experiment with different models.
In addition to facilitating ML research for round-the-clock monitoring at a reduced cost, the proposed framework will allow reusability of code and data.
arXiv Detail & Related papers (2021-02-08T21:56:15Z) - SensiX: A Platform for Collaborative Machine Learning on the Edge [69.1412199244903]
We present SensiX, a personal edge platform that stays between sensor data and sensing models.
We demonstrate its efficacy in developing motion and audio-based multi-device sensing systems.
Our evaluation shows that SensiX offers a 7-13% increase in overall accuracy and up to 30% increase across different environment dynamics at the expense of 3mW power overhead.
arXiv Detail & Related papers (2020-12-04T23:06:56Z) - Task-relevant Representation Learning for Networked Robotic Perception [74.0215744125845]
This paper presents an algorithm to learn task-relevant representations of sensory data that are co-designed with a pre-trained robotic perception model's ultimate objective.
Our algorithm aggressively compresses robotic sensory data by up to 11x more than competing methods.
arXiv Detail & Related papers (2020-11-06T07:39:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.