Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data
- URL: http://arxiv.org/abs/2405.16395v1
- Date: Sun, 26 May 2024 01:08:28 GMT
- Title: Daily Physical Activity Monitoring -- Adaptive Learning from Multi-source Motion Sensor Data
- Authors: Haoting Zhang, Donglin Zhan, Yunduan Lin, Jinghai He, Qing Zhu, Zuo-Jun Max Shen, Zeyu Zheng,
- Abstract summary: In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as from a wrist wearable device.
However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities.
We introduce a transfer learning framework that optimize machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting.
- Score: 17.604797095380114
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In healthcare applications, there is a growing need to develop machine learning models that use data from a single source, such as that from a wrist wearable device, to monitor physical activities, assess health risks, and provide immediate health recommendations or interventions. However, the limitation of using single-source data often compromises the model's accuracy, as it fails to capture the full scope of human activities. While a more comprehensive dataset can be gathered in a lab setting using multiple sensors attached to various body parts, this approach is not practical for everyday use due to the impracticality of wearing multiple sensors. To address this challenge, we introduce a transfer learning framework that optimizes machine learning models for everyday applications by leveraging multi-source data collected in a laboratory setting. We introduce a novel metric to leverage the inherent relationship between these multiple data sources, as they are all paired to capture aspects of the same physical activity. Through numerical experiments, our framework outperforms existing methods in classification accuracy and robustness to noise, offering a promising avenue for the enhancement of daily activity monitoring.
Related papers
- Scaling Wearable Foundation Models [54.93979158708164]
We investigate the scaling properties of sensor foundation models across compute, data, and model size.
Using a dataset of up to 40 million hours of in-situ heart rate, heart rate variability, electrodermal activity, accelerometer, skin temperature, and altimeter per-minute data from over 165,000 people, we create LSM.
Our results establish the scaling laws of LSM for tasks such as imputation, extrapolation, both across time and sensor modalities.
arXiv Detail & Related papers (2024-10-17T15:08:21Z) - Combating Missing Modalities in Egocentric Videos at Test Time [92.38662956154256]
Real-world applications often face challenges with incomplete modalities due to privacy concerns, efficiency needs, or hardware issues.
We propose a novel approach to address this issue at test time without requiring retraining.
MiDl represents the first self-supervised, online solution for handling missing modalities exclusively at test time.
arXiv Detail & Related papers (2024-04-23T16:01:33Z) - Deep Reinforcement Learning Empowered Activity-Aware Dynamic Health
Monitoring Systems [69.41229290253605]
Existing monitoring approaches were designed on the premise that medical devices track several health metrics concurrently.
This means that they report all relevant health values within that scope, which can result in excess resource use and the gathering of extraneous data.
We propose Dynamic Activity-Aware Health Monitoring strategy (DActAHM) for striking a balance between optimal monitoring performance and cost efficiency.
arXiv Detail & Related papers (2024-01-19T16:26:35Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - Multimodal video and IMU kinematic dataset on daily life activities
using affordable devices (VIDIMU) [0.0]
The objective of the dataset is to pave the way towards affordable patient gross motor tracking solutions for daily life activities recognition and kinematic analysis.
The novelty of dataset lies in: (i) the clinical relevance of the chosen movements, (ii) the combined utilization of affordable video and custom sensors, and (iii) the implementation of state-of-the-art tools for multimodal data processing of 3D body pose tracking and motion reconstruction.
arXiv Detail & Related papers (2023-03-27T14:05:49Z) - Human Activity Recognition on wrist-worn accelerometers using
self-supervised neural networks [0.0]
Measures of Activity of Daily Living (ADL) are an important indicator of overall health but difficult to measure in-clinic.
We propose a self-supervised learning paradigm to create a robust representation of accelerometer data that can generalize across devices and subjects.
We also propose a segmentation algorithm which can identify segments of salient activity and boost HAR accuracy on continuous real-life data.
arXiv Detail & Related papers (2021-12-22T23:35:20Z) - Multi-modal AsynDGAN: Learn From Distributed Medical Image Data without
Sharing Private Information [55.866673486753115]
We propose an extendable and elastic learning framework to preserve privacy and security.
The proposed framework is named distributed Asynchronized Discriminator Generative Adrial Networks (AsynDGAN)
arXiv Detail & Related papers (2020-12-15T20:41:24Z) - Federated Learning with Heterogeneous Labels and Models for Mobile
Activity Monitoring [0.7106986689736827]
On-device Federated Learning proves to be an effective approach for distributed and collaborative machine learning.
We propose a framework for federated label-based aggregation, which leverages overlapping information gain across activities.
Empirical evaluation with the Heterogeneity Human Activity Recognition (HHAR) dataset on Raspberry Pi 2 indicates an average deterministic accuracy increase of at least 11.01%.
arXiv Detail & Related papers (2020-12-04T11:44:17Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's
Disease Classification of Gait Patterns [3.5939555573102857]
We show how to extract features relevant to accelerometer gait data for Parkinson's disease classification.
Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model.
We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.
arXiv Detail & Related papers (2020-05-06T04:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.