Deep autoencoders for physics-constrained data-driven nonlinear
materials modeling
- URL: http://arxiv.org/abs/2209.04416v1
- Date: Sat, 3 Sep 2022 20:13:47 GMT
- Title: Deep autoencoders for physics-constrained data-driven nonlinear
materials modeling
- Authors: Xiaolong He, Qizhi He, Jiun-Shyan Chen
- Abstract summary: Physics-constrained data-driven computing is an emerging computational paradigm that allows simulation of complex materials directly based on material database.
This paper introduces deep learning techniques under the data-driven framework to address these fundamental issues in nonlinear materials modeling.
The offline trained autoencoder and the discovered embedding space are then incorporated in the online data-driven computation.
- Score: 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-constrained data-driven computing is an emerging computational
paradigm that allows simulation of complex materials directly based on material
database and bypass the classical constitutive model construction. However, it
remains difficult to deal with high-dimensional applications and extrapolative
generalization. This paper introduces deep learning techniques under the
data-driven framework to address these fundamental issues in nonlinear
materials modeling. To this end, an autoencoder neural network architecture is
introduced to learn the underlying low-dimensional representation (embedding)
of the given material database. The offline trained autoencoder and the
discovered embedding space are then incorporated in the online data-driven
computation such that the search of optimal material state from database can be
performed on a low-dimensional space, aiming to enhance the robustness and
predictability with projected material data. To ensure numerical stability and
representative constitutive manifold, a convexity-preserving interpolation
scheme tailored to the proposed autoencoder-based data-driven solver is
proposed for constructing the material state. In this study, the applicability
of the proposed approach is demonstrated by modeling nonlinear biological
tissues. A parametric study on data noise, data size and sparsity, training
initialization, and model architectures, is also conducted to examine the
robustness and convergence property of the proposed approach.
Related papers
- AI-Aided Kalman Filters [65.35350122917914]
The Kalman filter (KF) and its variants are among the most celebrated algorithms in signal processing.
Recent developments illustrate the possibility of fusing deep neural networks (DNNs) with classic Kalman-type filtering.
This article provides a tutorial-style overview of design approaches for incorporating AI in aiding KF-type algorithms.
arXiv Detail & Related papers (2024-10-16T06:47:53Z) - Physics-Informed Machine Learning for Seismic Response Prediction OF Nonlinear Steel Moment Resisting Frame Structures [6.483318568088176]
PiML method integrates scientific principles and physical laws into deep neural networks to model seismic responses of nonlinear structures.
Manipulating the equation of motion helps learn system nonlinearities and confines solutions within physically interpretable results.
Result handles complex data better than existing physics-guided LSTM models and outperforms other non-physics data-driven networks.
arXiv Detail & Related papers (2024-02-28T02:16:03Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
We propose a framework that combines Symbolic Regression (SR) and Discrete Exterior Calculus (DEC) for the automated discovery of physical models.
DEC provides building blocks for the discrete analogue of field theories, which are beyond the state-of-the-art applications of SR to physical problems.
We prove the effectiveness of our methodology by re-discovering three models of Continuum Physics from synthetic experimental data.
arXiv Detail & Related papers (2023-10-10T13:23:05Z) - Modular machine learning-based elastoplasticity: generalization in the
context of limited data [0.0]
We discuss a hybrid framework that can work on a variable amount of data by relying on the modularity of the elastoplasticity formulation.
The discovered material models are found to not only interpolate well but also allow for accurate extrapolation in a thermodynamically consistent manner far outside the domain of the training data.
arXiv Detail & Related papers (2022-10-15T17:35:23Z) - Thermodynamically Consistent Machine-Learned Internal State Variable
Approach for Data-Driven Modeling of Path-Dependent Materials [0.76146285961466]
Data-driven machine learning models, such as deep neural networks and recurrent neural networks (RNNs), have become viable alternatives.
This study proposes a machine-learned data robustness-driven modeling approach for path-dependent materials based on the measurable material.
arXiv Detail & Related papers (2022-05-01T23:25:08Z) - Calibrating constitutive models with full-field data via physics
informed neural networks [0.0]
We propose a physics-informed deep-learning framework for the discovery of model parameterizations given full-field displacement data.
We work with the weak form of the governing equations rather than the strong form to impose physical constraints upon the neural network predictions.
We demonstrate that informed machine learning is an enabling technology and may shift the paradigm of how full-field experimental data is utilized to calibrate models.
arXiv Detail & Related papers (2022-03-30T18:07:44Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - Model-Based Deep Learning [155.063817656602]
Signal processing, communications, and control have traditionally relied on classical statistical modeling techniques.
Deep neural networks (DNNs) use generic architectures which learn to operate from data, and demonstrate excellent performance.
We are interested in hybrid techniques that combine principled mathematical models with data-driven systems to benefit from the advantages of both approaches.
arXiv Detail & Related papers (2020-12-15T16:29:49Z) - Gradient-Based Training and Pruning of Radial Basis Function Networks
with an Application in Materials Physics [0.24792948967354234]
We propose a gradient-based technique for training radial basis function networks with an efficient and scalable open-source implementation.
We derive novel closed-form optimization criteria for pruning the models for continuous as well as binary data.
arXiv Detail & Related papers (2020-04-06T11:32:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.