論文の概要: Comparative Analysis of Predicting Subsequent Steps in Hénon Map
- arxiv url: http://arxiv.org/abs/2405.10190v2
- Date: Thu, 23 May 2024 08:19:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-25 04:51:43.393023
- Title: Comparative Analysis of Predicting Subsequent Steps in Hénon Map
- Title(参考訳): ヘノンマップにおける逐次ステップの予測の比較解析
- Authors: Vismaya V S, Alok Hareendran, Bharath V Nair, Sishu Shankar Muni, Martin Lellep,
- Abstract要約: 本研究では,H'enonマップの進化予測における機械学習モデルの性能評価を行った。
その結果、LSTMネットワークは、特に極端な事象予測において、予測精度が優れていることが示唆された。
この研究は、カオス力学の解明における機械学習の重要性を浮き彫りにする。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper explores the prediction of subsequent steps in H\'enon Map using various machine learning techniques. The H\'enon map, well known for its chaotic behaviour, finds applications in various fields including cryptography, image encryption, and pattern recognition. Machine learning methods, particularly deep learning, are increasingly essential for understanding and predicting chaotic phenomena. This study evaluates the performance of different machine learning models including Random Forest, Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) networks, Support Vector Machines (SVM), and Feed Forward Neural Networks (FNN) in predicting the evolution of the H\'enon map. Results indicate that LSTM network demonstrate superior predictive accuracy, particularly in extreme event prediction. Furthermore, a comparison between LSTM and FNN models reveals the LSTM's advantage, especially for longer prediction horizons and larger datasets. This research underscores the significance of machine learning in elucidating chaotic dynamics and highlights the importance of model selection and dataset size in forecasting subsequent steps in chaotic systems.
- Abstract(参考訳): 本稿では,H'enon Mapにおけるその後のステップの予測について,さまざまな機械学習手法を用いて検討する。
H\'enonマップはカオス的な振る舞いで知られており、暗号、画像暗号化、パターン認識など様々な分野で応用されている。
機械学習、特にディープラーニングは、カオス現象を理解し予測するためにますます不可欠になっている。
本研究では,Ranom Forest,Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM) Network, Support Vector Machines (SVM), Feed Forward Neural Networks (FNN) など,さまざまな機械学習モデルの性能を評価する。
その結果、LSTMネットワークは、特に極端な事象予測において、予測精度が優れていることが示唆された。
さらに、LSTMモデルとFNNモデルの比較により、LSTMのアドバンテージが明らかにされている。
本研究は、カオス力学の解明における機械学習の重要性を強調し、カオスシステムにおけるその後のステップを予測する上で、モデル選択とデータセットサイズの重要性を強調する。
関連論文リスト
- Hybridization of Persistent Homology with Neural Networks for Time-Series Prediction: A Case Study in Wave Height [0.0]
本稿では,ニューラルネットワークモデルの予測性能を向上させる機能工学手法を提案する。
具体的には、計算トポロジ手法を利用して、入力データから貴重なトポロジ的特徴を導出する。
タイムアヘッド予測では、FNN、RNN、LSTM、GRUモデルにおいて、R2$スコアの強化が重要だった。
論文 参考訳(メタデータ) (2024-09-03T01:26:21Z) - Towards Scalable and Versatile Weight Space Learning [51.78426981947659]
本稿では,重み空間学習におけるSANEアプローチを紹介する。
ニューラルネットワーク重みのサブセットの逐次処理に向けて,超表現の概念を拡張した。
論文 参考訳(メタデータ) (2024-06-14T13:12:07Z) - Assessing Neural Network Representations During Training Using
Noise-Resilient Diffusion Spectral Entropy [55.014926694758195]
ニューラルネットワークにおけるエントロピーと相互情報は、学習プロセスに関する豊富な情報を提供する。
データ幾何を利用して基礎となる多様体にアクセスし、これらの情報理論測度を確実に計算する。
本研究は,高次元シミュレーションデータにおける固有次元と関係強度の耐雑音性の測定結果である。
論文 参考訳(メタデータ) (2023-12-04T01:32:42Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Significant Wave Height Prediction based on Wavelet Graph Neural Network [2.8383948890824913]
機械学習やディープラーニングモデルを含む「ソフトコンピューティング」アプローチは,近年,多くの成功を収めている。
ウェーブレット変換とグラフニューラルネットワークの利点を統合するために、ウェーブレットグラフニューラルネットワーク(WGNN)アプローチを提案する。
実験の結果,提案手法は数値モデル,機械学習モデル,深層学習モデルなど,他のモデルよりも優れていることがわかった。
論文 参考訳(メタデータ) (2021-07-20T13:34:48Z) - Spatiotemporal convolutional network for time-series prediction and
causal inference [21.895413699349966]
時系列のマルチステップ予測を効率的に正確にレンダリングするために、ニューラルネットワークコンピューティングフレームワークi.N.N.を開発した。
このフレームワークは、人工知能(AI)や機械学習分野の実践的応用において大きな可能性を秘めている。
論文 参考訳(メタデータ) (2021-07-03T06:20:43Z) - Evaluation of deep learning models for multi-step ahead time series
prediction [1.3764085113103222]
本研究では,マルチステップ先行時系列予測のための深層学習モデルの性能を比較検討する。
当社のディープラーニングメソッドは、単純なリカレントニューラルネットワーク、長期メモリ(LSTM)ネットワーク、双方向LSTM、エンコーダデコーダLSTMネットワーク、および畳み込みニューラルネットワークを妥協します。
論文 参考訳(メタデータ) (2021-03-26T04:07:11Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
歴史的文脈からビジュアルダイナミクスを学習するための新しいリカレントネットワークであるPredRNNを紹介する。
本手法は,3つの標準データセット上で高い競争結果が得られることを示す。
論文 参考訳(メタデータ) (2021-03-17T08:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。