論文の概要: Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries
- arxiv url: http://arxiv.org/abs/2209.05253v1
- Date: Wed, 7 Sep 2022 16:54:15 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-18 16:54:32.852037
- Title: Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries
- Title(参考訳): 移動学習と視覚トランスフォーマによるリチウムイオン電池の健康状態予測
- Authors: Pengyu Fu, Liang Chu, Zhuoran Hou, Jincheng Hu, Yanjun Huang, and
Yuanjian Zhang
- Abstract要約: 健康状態(SOH)の正確な予測は、電池寿命に対するユーザの不安を緩和するだけでなく、バッテリーの管理に重要な情報を提供する。
本稿では,視覚変換器(ViT)モデルに基づくSOHの予測手法を提案する。
- 参考スコア(独自算出の注目度): 1.2468700211588883
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, significant progress has been made in transportation
electrification. And lithium-ion batteries (LIB), as the main energy storage
devices, have received widespread attention. Accurately predicting the state of
health (SOH) can not only ease the anxiety of users about the battery life but
also provide important information for the management of the battery. This
paper presents a prediction method for SOH based on Vision Transformer (ViT)
model. First, discrete charging data of a predefined voltage range is used as
an input data matrix. Then, the cycle features of the battery are captured by
the ViT which can obtain the global features, and the SOH is obtained by
combining the cycle features with the full connection (FC) layer. At the same
time, transfer learning (TL) is introduced, and the prediction model based on
source task battery training is further fine-tuned according to the early cycle
data of the target task battery to provide an accurate prediction. Experiments
show that our method can obtain better feature expression compared with
existing deep learning methods so that better prediction effect and transfer
effect can be achieved.
- Abstract(参考訳): 近年、交通の電気化が進みつつある。
また、リチウムイオン電池(lib)が主なエネルギー貯蔵装置として注目されている。
健康状態(SOH)の正確な予測は、電池寿命に対するユーザの不安を緩和するだけでなく、バッテリーの管理に重要な情報を提供する。
本稿では,視覚変換器(ViT)モデルに基づくSOHの予測手法を提案する。
まず、入力データマトリックスとして、予め定義された電圧範囲の離散充電データを用いる。
そして、このグローバルな特徴を得ることができるViTにより電池のサイクル特徴を捕捉し、サイクル特徴とフル接続(FC)層とを組み合わせてSOHを得る。
同時に、転送学習(tl)が導入され、目標タスクバッテリの初期サイクルデータに応じて、ソースタスクバッテリトレーニングに基づく予測モデルをさらに微調整し、正確な予測を提供する。
実験の結果,既存の深層学習法と比較して特徴表現の精度が向上し,予測効果や伝達効果が向上することが示された。
関連論文リスト
- Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation [0.0]
リチウムイオン電池は、輸送、電子機器、クリーンエネルギー貯蔵の技術の進歩に欠かせない。
キャパシティを推定する現在の方法は、キー変数の長期的な時間的依存関係を適切に説明できない。
本研究では,電池データにおける長期パターンと短期パターンの両方を考慮した変圧器ベースの電池容量予測モデルを構築した。
論文 参考訳(メタデータ) (2024-07-22T20:21:40Z) - Generating Comprehensive Lithium Battery Charging Data with Generative AI [24.469319419012745]
本研究では、生成AIモデルの条件として、EOL(End of Life)とECL(Equivalent Cycle Life)を紹介する。
CVAEモデルに埋め込み層を組み込むことにより, RCVAE(Refined Conditional Variational Autoencoder)を開発した。
準ビデオ形式にプリプロセッシングすることで、電圧、電流、温度、充電容量を含む電気化学データの総合的な合成を実現する。
この方法は、リチウム電池データの人工合成のための新しい研究領域を開拓する、包括的な電気化学データセットを提供する。
論文 参考訳(メタデータ) (2024-04-11T09:08:45Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
バッテリー性能と「使い勝手」を設計・使用の機能として理解することが最重要事項である。
健康記述子の28個のバッテリ状態を予測するために, ディープ・トランスフォーマー・ネットワーク経由で, その方向への第一歩を提示する。
論文 参考訳(メタデータ) (2023-09-18T15:04:40Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Effective Pre-Training Objectives for Transformer-based Autoencoders [97.99741848756302]
トランスフォーマーエンコーダの効率,コスト,精度のトレードオフについて検討する。
共通の目的の機能を組み合わせて、新しい効果的な事前学習アプローチを作成します。
論文 参考訳(メタデータ) (2022-10-24T18:39:44Z) - Pretraining Graph Neural Networks for few-shot Analog Circuit Modeling
and Design [68.1682448368636]
本稿では、新しい未知のトポロジや未知の予測タスクに適応可能な回路表現を学習するための教師付き事前学習手法を提案する。
異なる回路の変動位相構造に対処するため、各回路をグラフとして記述し、グラフニューラルネットワーク(GNN)を用いてノード埋め込みを学習する。
出力ノード電圧の予測における事前学習GNNは、新しい未知のトポロジや新しい回路レベル特性の予測に適応可能な学習表現を促進することができることを示す。
論文 参考訳(メタデータ) (2022-03-29T21:18:47Z) - Learning Generative Vision Transformer with Energy-Based Latent Space
for Saliency Prediction [51.80191416661064]
本稿では,有意な物体検出に先立って,潜伏変数を持つ新しい視覚変換器を提案する。
ビジョントランスネットワークとエネルギーベース先行モデルの両方は、マルコフ連鎖モンテカルロによる最大推定を通じて共同で訓練される。
生成型視覚変換器により、画像から容易に画素単位の不確実性マップを得ることができ、画像から唾液濃度を予測するためのモデル信頼度を示す。
論文 参考訳(メタデータ) (2021-12-27T06:04:33Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
本稿では,Kristen A. Seversonらが実施したデータと手法を用いて,研究チームが使用した方法論を探索する。
基本的な取り組みは、機械学習技術が、バッテリー容量を正確に予測するために、早期ライフサイクルデータを使用するように訓練されているかどうかを確認することである。
論文 参考訳(メタデータ) (2021-10-19T01:35:12Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
本稿では, 電動トラックにおけるLiイオン電池の機械学習による健康状態(SoH)の予後について検討する。
バッテリーSoHを予測するための自動回帰型統合モデリング平均(ARIMA)と教師付き学習(決定木をベース見積もりとして袋詰め)を提案します。
論文 参考訳(メタデータ) (2021-03-30T12:19:21Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
リチウムイオン電池のためのDeep Forward Networkを構築し,その性能評価を行った。
本研究の貢献はリチウムイオン電池用ディープフォワードネットワークの構築手法とその性能評価である。
論文 参考訳(メタデータ) (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。