論文の概要: Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation
- arxiv url: http://arxiv.org/abs/2407.16036v1
- Date: Mon, 22 Jul 2024 20:21:40 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-24 19:15:20.076277
- Title: Transformer-based Capacity Prediction for Lithium-ion Batteries with Data Augmentation
- Title(参考訳): データ拡張によるリチウムイオン電池の変圧器による容量予測
- Authors: Gift Modekwe, Saif Al-Wahaibi, Qiugang Lu,
- Abstract要約: リチウムイオン電池は、輸送、電子機器、クリーンエネルギー貯蔵の技術の進歩に欠かせない。
キャパシティを推定する現在の方法は、キー変数の長期的な時間的依存関係を適切に説明できない。
本研究では,電池データにおける長期パターンと短期パターンの両方を考慮した変圧器ベースの電池容量予測モデルを構築した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Lithium-ion batteries are pivotal to technological advancements in transportation, electronics, and clean energy storage. The optimal operation and safety of these batteries require proper and reliable estimation of battery capacities to monitor the state of health. Current methods for estimating the capacities fail to adequately account for long-term temporal dependencies of key variables (e.g., voltage, current, and temperature) associated with battery aging and degradation. In this study, we explore the usage of transformer networks to enhance the estimation of battery capacity. We develop a transformer-based battery capacity prediction model that accounts for both long-term and short-term patterns in battery data. Further, to tackle the data scarcity issue, data augmentation is used to increase the data size, which helps to improve the performance of the model. Our proposed method is validated with benchmark datasets. Simulation results show the effectiveness of data augmentation and the transformer network in improving the accuracy and robustness of battery capacity prediction.
- Abstract(参考訳): リチウムイオン電池は、輸送、電子機器、クリーンエネルギー貯蔵の技術の進歩に欠かせない。
これらの電池の最適運転と安全性は、健康状態を監視するために適切な、信頼性の高い電池容量の推定を必要とする。
キャパシティ推定の現在の方法は、電池の老朽化と劣化に伴う鍵変数(例えば、電圧、電流、温度)の長期時間依存性を適切に考慮できない。
本研究では,バッテリ容量推定のための変圧器ネットワークの利用について検討する。
本研究では,電池データにおける長期パターンと短期パターンの両方を考慮した変圧器ベースの電池容量予測モデルを構築した。
さらに,データ不足問題に対処するため,データサイズ向上のためにデータ拡張が用いられ,モデルの性能向上に寄与する。
提案手法はベンチマークデータセットを用いて検証する。
シミュレーションの結果,バッテリー容量予測の精度と堅牢性を向上させるため,データ拡張とトランスフォーマーネットワークの有効性が示された。
関連論文リスト
- BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
バッテリータイプ分類のための機械学習に基づくアプローチを導入し、アプリケーションにおけるデータ不足の問題に対処する。
本研究では,大規模なデータセットに最適化された既存の知識を活用するために移動学習を適用したBatSortを提案する。
実験の結果,BatSortの精度は平均92.1%,最大96.2%であった。
論文 参考訳(メタデータ) (2024-04-08T18:05:24Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
バッテリー性能と「使い勝手」を設計・使用の機能として理解することが最重要事項である。
健康記述子の28個のバッテリ状態を予測するために, ディープ・トランスフォーマー・ネットワーク経由で, その方向への第一歩を提示する。
論文 参考訳(メタデータ) (2023-09-18T15:04:40Z) - Cerberus: A Deep Learning Hybrid Model for Lithium-Ion Battery Aging
Estimation and Prediction Based on Relaxation Voltage Curves [7.07637687957493]
本稿では,ディープラーニングに基づくキャパシティ老化推定と予測のためのハイブリッドモデルを提案する。
提案手法は, チャージサイクルと放電サイクルを含む新しいデータセットに対して, 様々な速度で検証する。
論文 参考訳(メタデータ) (2023-08-15T15:07:32Z) - Toward High-Performance Energy and Power Battery Cells with Machine
Learning-based Optimization of Electrode Manufacturing [61.27691515336054]
本研究では,所望のバッテリ適用条件に対する高性能電極の課題に対処する。
本稿では、電気化学性能の2目的最適化のための決定論的機械学習(ML)支援パイプラインによって支援される強力なデータ駆動アプローチを提案する。
以上の結果から,スラリー中の固形物の中間値とカレンダリング度を併用した高活性物質が最適電極となることが示唆された。
論文 参考訳(メタデータ) (2023-07-07T13:48:50Z) - Transfer Learning and Vision Transformer based State-of-Health
prediction of Lithium-Ion Batteries [1.2468700211588883]
健康状態(SOH)の正確な予測は、電池寿命に対するユーザの不安を緩和するだけでなく、バッテリーの管理に重要な情報を提供する。
本稿では,視覚変換器(ViT)モデルに基づくSOHの予測手法を提案する。
論文 参考訳(メタデータ) (2022-09-07T16:54:15Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
本稿では,Kristen A. Seversonらが実施したデータと手法を用いて,研究チームが使用した方法論を探索する。
基本的な取り組みは、機械学習技術が、バッテリー容量を正確に予測するために、早期ライフサイクルデータを使用するように訓練されているかどうかを確認することである。
論文 参考訳(メタデータ) (2021-10-19T01:35:12Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
バッテリーと太陽光発電システムのコストの低下は、ソーラーバッテリーの家庭用システムの増加に繋がった。
本研究では,システム内の電池の充電および放電挙動を最適化するために,深い決定論的ポリシーアルゴリズムを用いる。
論文 参考訳(メタデータ) (2021-09-10T10:59:14Z) - Physics-informed CoKriging model of a redox flow battery [68.8204255655161]
レドックスフロー電池(RFB)は、大量のエネルギーを安価かつ効率的に貯蔵する機能を提供する。
RFBの充電曲線の高速かつ正確なモデルが必要であり、バッテリ容量と性能が向上する可能性がある。
RFBの電荷分配曲線を予測する多相モデルを構築した。
論文 参考訳(メタデータ) (2021-06-17T00:49:55Z) - A Dynamic Battery State-of-Health Forecasting Model for Electric Trucks:
Li-Ion Batteries Case-Study [1.1470070927586016]
本稿では, 電動トラックにおけるLiイオン電池の機械学習による健康状態(SoH)の予後について検討する。
バッテリーSoHを予測するための自動回帰型統合モデリング平均(ARIMA)と教師付き学習(決定木をベース見積もりとして袋詰め)を提案します。
論文 参考訳(メタデータ) (2021-03-30T12:19:21Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
リチウムイオン電池のためのDeep Forward Networkを構築し,その性能評価を行った。
本研究の貢献はリチウムイオン電池用ディープフォワードネットワークの構築手法とその性能評価である。
論文 参考訳(メタデータ) (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
電動垂直離着陸機(eVTOL)の設計、解析、運用には、Liイオン電池の性能の迅速かつ正確な予測が必要である。
我々は,eVTOLのデューティサイクルに特有の電池性能と熱的挙動のデータセットを生成する。
このデータセットを用いて,物理インフォームド機械学習を用いた電池性能・劣化モデル(Cellfit)を開発した。
論文 参考訳(メタデータ) (2020-07-06T16:10:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。