論文の概要: A Review of Challenges in Machine Learning based Automated Hate Speech
Detection
- arxiv url: http://arxiv.org/abs/2209.05294v1
- Date: Mon, 12 Sep 2022 14:56:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-13 12:28:16.367674
- Title: A Review of Challenges in Machine Learning based Automated Hate Speech
Detection
- Title(参考訳): 機械学習によるヘイト音声の自動検出における課題
- Authors: Abhishek Velankar, Hrushikesh Patil, Raviraj Joshi
- Abstract要約: 我々は、ヘイトスピーチ識別のための機械学習やディープラーニングベースのソリューションが直面する課題に焦点を当てている。
トップレベルでは、データレベル、モデルレベル、人間レベルの課題を区別します。
この調査は、ヘイトスピーチ検出の分野で、研究者がより効率的にソリューションを設計するのに役立つだろう。
- 参考スコア(独自算出の注目度): 0.966840768820136
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The spread of hate speech on social media space is currently a serious issue.
The undemanding access to the enormous amount of information being generated on
these platforms has led people to post and react with toxic content that
originates violence. Though efforts have been made toward detecting and
restraining such content online, it is still challenging to identify it
accurately. Deep learning based solutions have been at the forefront of
identifying hateful content. However, the factors such as the context-dependent
nature of hate speech, the intention of the user, undesired biases, etc. make
this process overcritical. In this work, we deeply explore a wide range of
challenges in automatic hate speech detection by presenting a hierarchical
organization of these problems. We focus on challenges faced by machine
learning or deep learning based solutions to hate speech identification. At the
top level, we distinguish between data level, model level, and human level
challenges. We further provide an exhaustive analysis of each level of the
hierarchy with examples. This survey will help researchers to design their
solutions more efficiently in the domain of hate speech detection.
- Abstract(参考訳): ソーシャルメディアにおけるヘイトスピーチの普及は、現在深刻な問題である。
これらのプラットフォームで発生した膨大な情報への不必要なアクセスは、人々が暴力を引き起こす有害なコンテンツに投稿し、反応するきっかけとなった。
オンラインコンテンツの検出と抑制は試みられているが、正確な特定は依然として困難である。
ディープラーニングベースのソリューションは、憎しみのあるコンテンツを識別する最前線にある。
しかし、ヘイトスピーチの文脈依存性、ユーザの意図、望ましくないバイアスなどといった要因は、このプロセスを過度に批判する。
本研究では,これらの問題を階層的に整理することで,ヘイトスピーチの自動検出における幅広い課題を深く探究する。
機械学習やディープラーニングによるヘイトスピーチ識別のソリューションが直面する課題に焦点を当てている。
トップレベルでは、データレベル、モデルレベル、人間レベルの課題を区別します。
さらに,各階層レベルの徹底的な分析を例で示す。
この調査は、ヘイトスピーチ検出の分野で、研究者がより効率的にソリューションを設計するのに役立つだろう。
関連論文リスト
- Hierarchical Sentiment Analysis Framework for Hate Speech Detection: Implementing Binary and Multiclass Classification Strategy [0.0]
本稿では,英語におけるヘイトスピーチを検出するために,共有感情表現と統合された新しいマルチタスクモデルを提案する。
我々は、感情分析とトランスフォーマーに基づく訓練モデルを利用することで、複数のデータセット間でのヘイトスピーチの検出を大幅に改善できると結論付けた。
論文 参考訳(メタデータ) (2024-11-03T04:11:33Z) - V3Det Challenge 2024 on Vast Vocabulary and Open Vocabulary Object Detection: Methods and Results [142.5704093410454]
V3Det Challenge 2024は、オブジェクト検出研究の境界を推し進めることを目的としている。
Vast Vocabulary Object DetectionとOpen Vocabulary Object Detectionの2つのトラックで構成されている。
我々は,広い語彙とオープン語彙のオブジェクト検出において,今後の研究の方向性を刺激することを目指している。
論文 参考訳(メタデータ) (2024-06-17T16:58:51Z) - An Investigation of Large Language Models for Real-World Hate Speech
Detection [46.15140831710683]
既存の手法の大きな制限は、ヘイトスピーチ検出がコンテキストの問題である点である。
近年,大規模言語モデル (LLM) はいくつかの自然言語処理において最先端の性能を示した。
本研究は, ヘイトスピーチの文脈を効果的に把握する上で, 巧妙な推論プロンプトが有効であることを明らかにする。
論文 参考訳(メタデータ) (2024-01-07T00:39:33Z) - Hate Speech Detection via Dual Contrastive Learning [25.878271501274245]
本稿では,ヘイトスピーチ検出のための新しい双方向コントラスト学習フレームワークを提案する。
本フレームワークは,自己教師型学習と教師型学習の損失を協調的に最適化し,スパンレベルの情報を取得する。
公開可能な2つの英語データセットの実験を行い、実験結果から、提案モデルが最先端のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2023-07-10T13:23:36Z) - CoSyn: Detecting Implicit Hate Speech in Online Conversations Using a
Context Synergized Hyperbolic Network [52.85130555886915]
CoSynは、オンライン会話における暗黙のヘイトスピーチを検出するために、ユーザと会話のコンテキストを明示的に組み込んだ、コンテキスト中心のニューラルネットワークである。
我々は、CoSynが、1.24%から57.8%の範囲で絶対的に改善された暗黙のヘイトスピーチを検出することで、我々のベースラインを全て上回っていることを示す。
論文 参考訳(メタデータ) (2023-03-02T17:30:43Z) - Hate Speech Classification Using SVM and Naive BAYES [0.0]
多くの国は、オンラインヘイトスピーチを避けるための法律を開発した。
しかし、オンラインコンテンツが成長を続けるにつれ、ヘイトスピーチが広まる。
ヘイトスピーチを検出して削除するために、オンラインユーザーコンテンツを自動的に処理することが重要である。
論文 参考訳(メタデータ) (2022-03-21T17:15:38Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
ここでは, ディープ・ヘイト・音声検出法と浅いヘイト・音声検出法を大規模に比較した。
私たちの目標は、この地域の進歩を照らし、現在の最先端の強みと弱点を特定することです。
そこで我々は,ヘイトスピーチ検出の実践的利用に関するガイダンスの提供,最先端の定量化,今後の研究方向の特定を目的としている。
論文 参考訳(メタデータ) (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
本稿では,低リソース言語におけるヘイトスピーチ検出を支援するために,言語間移動学習に着目した。
言語間単語の埋め込みを利用して、ソース言語上でニューラルネットワークシステムをトレーニングし、ターゲット言語に適用します。
本研究では,ヘイトスピーチデータセットのラベル不均衡の問題について検討する。なぜなら,ヘイトサンプルと比較して非ヘイトサンプルの比率が高いことがモデル性能の低下につながることが多いからだ。
論文 参考訳(メタデータ) (2022-01-15T20:48:14Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHateは、単語埋め込み、感情、トピック情報などの多面的なテキスト表現を組み合わせた、新しいディープラーニングモデルです。
大規模な実験を行い、3つの大規模公開現実世界のデータセットでDeepHateを評価します。
論文 参考訳(メタデータ) (2021-03-14T16:11:30Z) - Speaker De-identification System using Autoencoders and Adversarial
Training [58.720142291102135]
本稿では,対人訓練とオートエンコーダに基づく話者識別システムを提案する。
実験結果から, 対向学習とオートエンコーダを組み合わせることで, 話者検証システムの誤り率が同等になることがわかった。
論文 参考訳(メタデータ) (2020-11-09T19:22:05Z) - Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media [20.974715256618754]
表現の自由の誤用は、様々なサイバー犯罪や反社会的活動の増加につながった。
ヘイトスピーチ(Hate speech)は、社会的ファブリックの完全性に脅威をもたらす可能性があるため、他の問題と同様に真剣に対処する必要がある。
本稿では,ソーシャルメディアにおける様々なヘイトスピーチの検出に様々な埋め込みを応用したディープラーニングアプローチを提案する。
論文 参考訳(メタデータ) (2020-05-29T17:28:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。