論文の概要: Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey
- arxiv url: http://arxiv.org/abs/2209.05579v1
- Date: Mon, 12 Sep 2022 20:02:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 12:35:54.033812
- Title: Intrusion Detection Systems Using Support Vector Machines on the
KDDCUP'99 and NSL-KDD Datasets: A Comprehensive Survey
- Title(参考訳): KDDCUP'99およびNSL-KDDデータセットを用いた支援ベクトルマシンによる侵入検知システム:総合調査
- Authors: Mikel K. Ngueajio, Gloria Washington, Danda B. Rawat, and Yolande
Ngueabou
- Abstract要約: 我々は、サイバーセキュリティにおいて最も広く使われている2つのデータセット、すなわちKDDCUP'99とNSL-KDDデータセットで評価された研究に焦点を当てた。
本稿では,SVMの役割や研究に関わるアルゴリズムについて,各手法の概要について述べる。
- 参考スコア(独自算出の注目度): 6.847009696437944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the growing rates of cyber-attacks and cyber espionage, the need for
better and more powerful intrusion detection systems (IDS) is even more
warranted nowadays. The basic task of an IDS is to act as the first line of
defense, in detecting attacks on the internet. As intrusion tactics from
intruders become more sophisticated and difficult to detect, researchers have
started to apply novel Machine Learning (ML) techniques to effectively detect
intruders and hence preserve internet users' information and overall trust in
the entire internet network security. Over the last decade, there has been an
explosion of research on intrusion detection techniques based on ML and Deep
Learning (DL) architectures on various cyber security-based datasets such as
the DARPA, KDDCUP'99, NSL-KDD, CAIDA, CTU-13, UNSW-NB15. In this research, we
review contemporary literature and provide a comprehensive survey of different
types of intrusion detection technique that applies Support Vector Machines
(SVMs) algorithms as a classifier. We focus only on studies that have been
evaluated on the two most widely used datasets in cybersecurity namely: the
KDDCUP'99 and the NSL-KDD datasets. We provide a summary of each method,
identifying the role of the SVMs classifier, and all other algorithms involved
in the studies. Furthermore, we present a critical review of each method, in
tabular form, highlighting the performance measures, strengths, and limitations
of each of the methods surveyed.
- Abstract(参考訳): サイバー攻撃やサイバースパイの増加に伴い、より優れた、より強力な侵入検知システム(IDS)の必要性はさらに高まっている。
IDSの基本課題は、インターネットに対する攻撃を検知する第一線として機能することである。
侵入者からの侵入戦術がより洗練され、検出が困難になるにつれて、研究者は侵入者を効果的に検出し、インターネットユーザの情報とインターネットネットワーク全体のセキュリティに対する信頼を維持するために、新しい機械学習(ml)技術を適用し始めた。
過去10年間で、DARPA、KDDCUP'99、NSL-KDD、CAIDA、CTU-13、UNSW-NB15など、さまざまなサイバーセキュリティベースのデータセットに対するMLとディープラーニング(DL)アーキテクチャに基づく侵入検出技術の研究が爆発的に増えている。
本研究では,同時代の文献を概観し,svm( support vector machine)アルゴリズムを分類器として適用した侵入検出手法の包括的調査を行った。
我々は、サイバーセキュリティにおいて最も広く使われている2つのデータセット、すなわちKDDCUP'99とNSL-KDDデータセットで評価された研究にのみ焦点を当てる。
本稿では,SVMs分類器の役割と,研究に関わるすべてのアルゴリズムについて,各手法の概要について述べる。
さらに,各手法を表形式で批判的にレビューし,各手法の性能尺度,強度,限界を強調する。
関連論文リスト
- Model Inversion Attacks: A Survey of Approaches and Countermeasures [59.986922963781]
近年、新しいタイプのプライバシ攻撃であるモデル反転攻撃(MIA)は、トレーニングのためのプライベートデータの機密性を抽出することを目的としている。
この重要性にもかかわらず、総合的な概要とMIAに関する深い洞察を提供する体系的な研究が欠如している。
本調査は、攻撃と防御の両方において、最新のMIA手法を要約することを目的としている。
論文 参考訳(メタデータ) (2024-11-15T08:09:28Z) - Adversarial Attacks and Defenses in Fault Detection and Diagnosis: A Comprehensive Benchmark on the Tennessee Eastman Process [39.677420930301736]
機械学習をACS(Automated Control Systems)に統合することで、産業プロセス管理における意思決定が促進される。
これらの技術を広く採用する際の制限の1つは、敵の攻撃に対するニューラルネットワークの脆弱性である。
本研究では、テネシー・イーストマン・プロセス・データセットを用いて、ACSにおける障害診断のためのディープラーニングモデルをデプロイする際の脅威について検討する。
論文 参考訳(メタデータ) (2024-03-20T10:59:06Z) - Few-shot Weakly-supervised Cybersecurity Anomaly Detection [1.179179628317559]
本稿では,既存の弱教師付きディープラーニング異常検出フレームワークの強化を提案する。
このフレームワークには、データ拡張、表現学習、順序回帰が含まれている。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2023-04-15T04:37:54Z) - Graph Mining for Cybersecurity: A Survey [61.505995908021525]
マルウェア、スパム、侵入などのサイバー攻撃の爆発的な増加は、社会に深刻な影響をもたらした。
従来の機械学習(ML)ベースの手法は、サイバー脅威の検出に広く用いられているが、現実のサイバーエンティティ間の相関をモデル化することはほとんどない。
グラフマイニング技術の普及に伴い、サイバーエンティティ間の相関を捉え、高いパフォーマンスを達成するために、多くの研究者がこれらの手法を調査した。
論文 参考訳(メタデータ) (2023-04-02T08:43:03Z) - Adversarial Attacks and Defenses in Machine Learning-Powered Networks: A
Contemporary Survey [114.17568992164303]
機械学習とディープニューラルネットワークにおけるアドリアックと防御が注目されている。
本調査は、敵攻撃・防衛技術分野における最近の進歩を包括的に概観する。
検索ベース、意思決定ベース、ドロップベース、物理世界攻撃など、新たな攻撃方法も検討されている。
論文 参考訳(メタデータ) (2023-03-11T04:19:31Z) - Ensemble learning techniques for intrusion detection system in the
context of cybersecurity [0.0]
侵入検知システムの概念は、より良い結果を得るためにデータマイニングと機械学習オレンジツールを応用した。
本研究の目的は,SVM (Support Vector Machine) と kNearest Neighbour (kNN) アルゴリズムによって支援されたスタックリング手法を用いて,アンサンブル学習手法を検討することである。
論文 参考訳(メタデータ) (2022-12-21T10:50:54Z) - A Hybrid Deep Learning Anomaly Detection Framework for Intrusion
Detection [4.718295605140562]
本稿では,3段階のディープラーニング異常検出に基づくネットワーク侵入攻撃検出フレームワークを提案する。
このフレームワークは、教師なし(K平均クラスタリング)、半教師付き(GANomaly)、および教師付き学習(CNN)アルゴリズムの統合を含む。
そして、3つのベンチマークデータセット上で実装したフレームワークの性能を評価した。
論文 参考訳(メタデータ) (2022-12-02T04:40:54Z) - Robustness Evaluation of Deep Unsupervised Learning Algorithms for
Intrusion Detection Systems [0.0]
本稿では, 汚染データに対する侵入検出のための6つの最新のディープラーニングアルゴリズムの堅牢性を評価する。
本研究で用いた最先端のアルゴリズムは,データ汚染に敏感であり,データ摂動に対する自己防衛の重要性を明らかにしている。
論文 参考訳(メタデータ) (2022-06-25T02:28:39Z) - Learning to Detect: A Data-driven Approach for Network Intrusion
Detection [17.288512506016612]
ネットワークトラフィックデータセットであるNSL-KDDについて、パターンを可視化し、異なる学習モデルを用いてサイバー攻撃を検出することで包括的な研究を行う。
侵入検知に単一学習モデルアプローチを用いた従来の浅層学習モデルや深層学習モデルとは異なり、階層戦略を採用する。
バイナリ侵入検出タスクにおける教師なし表現学習モデルの利点を実証する。
論文 参考訳(メタデータ) (2021-08-18T21:19:26Z) - Adversarial Machine Learning Attacks and Defense Methods in the Cyber
Security Domain [58.30296637276011]
本稿では,機械学習技術に基づくセキュリティソリューションに対する敵攻撃に関する最新の研究を要約する。
サイバーセキュリティドメインでエンドツーエンドの敵攻撃を実装するという、ユニークな課題を議論するのは、これが初めてである。
論文 参考訳(メタデータ) (2020-07-05T18:22:40Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
本稿では,侵入検知器の開発を目的として,ネットワークデータに適用された手法について概説する。
本稿では,データのキャプチャ,準備,変換,データマイニング,評価などの手法について論じる。
この文献レビューの結果、ネットワークセキュリティ分野のさらなる研究のために考慮すべきいくつかのオープンな問題について検討する。
論文 参考訳(メタデータ) (2020-01-27T11:21:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。