論文の概要: Graph Neural Networks for Molecules
- arxiv url: http://arxiv.org/abs/2209.05582v1
- Date: Mon, 12 Sep 2022 20:10:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-14 13:15:59.866888
- Title: Graph Neural Networks for Molecules
- Title(参考訳): 分子のためのグラフニューラルネットワーク
- Authors: Yuyang Wang, Zijie Li, Amir Barati Farimani
- Abstract要約: 本稿では、GNNとその様々な有機分子への応用について紹介する。
GNNは、ノード機能を反復的に更新するために、汎用的で強力なフレームワークであるメッセージパッシング操作に依存している。
- 参考スコア(独自算出の注目度): 9.04563945965023
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph neural networks (GNNs), which are capable of learning representations
from graphical data, are naturally suitable for modeling molecular systems.
This review introduces GNNs and their various applications for small organic
molecules. GNNs rely on message-passing operations, a generic yet powerful
framework, to update node features iteratively. Many researches design GNN
architectures to effectively learn topological information of 2D molecule
graphs as well as geometric information of 3D molecular systems. GNNs have been
implemented in a wide variety of molecular applications, including molecular
property prediction, molecular scoring and docking, molecular optimization and
de novo generation, molecular dynamics simulation, etc. Besides, the review
also summarizes the recent development of self-supervised learning for
molecules with GNNs.
- Abstract(参考訳): グラフィカルデータから表現を学習できるグラフニューラルネットワーク(GNN)は、自然に分子システムをモデル化するのに適している。
本稿では、GNNとその様々な有機分子への応用について紹介する。
GNNは、ノード機能を反復的に更新するために、汎用的で強力なフレームワークであるメッセージパッシング操作に依存している。
多くの研究がGNNアーキテクチャを設計し、2次元分子グラフの位相情報と3次元分子系の幾何学情報を効果的に学習している。
gnnは、分子特性予測、分子スコアリングとドッキング、分子最適化とデノボ生成、分子動力学シミュレーションなど、様々な分子応用に実装されている。
さらに、GNNを用いた分子の自己教師型学習の最近の発展についても概説する。
関連論文リスト
- Molecular Graph Representation Learning via Structural Similarity Information [11.38130169319915]
我々は新しい分子グラフ表現学習法である textbf Structure similarity Motif GNN (MSSM-GNN) を紹介する。
特に,分子間の類似性を定量的に表現するために,グラフカーネルアルゴリズムを利用した特殊設計グラフを提案する。
我々はGNNを用いて分子グラフから特徴表現を学習し、追加の分子表現情報を組み込むことで特性予測の精度を高めることを目的としている。
論文 参考訳(メタデータ) (2024-09-13T06:59:10Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - HiGNN: Hierarchical Informative Graph Neural Networks for Molecular
Property Prediction Equipped with Feature-Wise Attention [5.735627221409312]
分子特性を予測するための階層型情報グラフニューラルネットワークフレームワーク(HiGNN)を提案する。
実験により、HiGNNは、多くの挑戦的な薬物発見関連ベンチマークデータセットに対して最先端の予測性能を達成することが示された。
論文 参考訳(メタデータ) (2022-08-30T05:16:15Z) - MolGraph: a Python package for the implementation of molecular graphs
and graph neural networks with TensorFlow and Keras [51.92255321684027]
MolGraphは、分子機械学習(ML)のためのグラフニューラルネットワーク(GNN)パッケージである
MolGraphは、分子ML問題を解決するためにGNNアルゴリズムに渡すことができる小さな分子グラフを生成するための化学モジュールを実装している。
GNNは分子識別に有用であり,クロマトグラフィー保持時間データの解釈性が向上した。
論文 参考訳(メタデータ) (2022-08-21T18:37:41Z) - Graph neural networks for the prediction of molecular structure-property
relationships [59.11160990637615]
グラフニューラルネットワーク(GNN)は、分子グラフ上で直接動作する新しい機械学習手法である。
GNNは、エンドツーエンドでプロパティを学習できるため、情報記述子の必要性を回避することができる。
本稿では、分子特性予測のための2つの例を通して、GNNの基礎を説明し、GNNの応用を実証する。
論文 参考訳(メタデータ) (2022-07-25T11:30:44Z) - Molecular Graph Generation via Geometric Scattering [7.796917261490019]
グラフニューラルネットワーク(GNN)は、薬物の設計と発見の問題を解決するために広く使われている。
分子グラフ生成における表現第一のアプローチを提案する。
我々のアーキテクチャは、医薬品のデータセットの有意義な表現を学習し、目標指向の薬物合成のためのプラットフォームを提供する。
論文 参考訳(メタデータ) (2021-10-12T18:00:23Z) - ChemRL-GEM: Geometry Enhanced Molecular Representation Learning for
Property Prediction [25.49976851499949]
化学表現学習のための新しい幾何強化分子表現学習法(GEM)を提案する。
まず、分子内の原子、結合、結合角を同時にモデル化する幾何学に基づくGNNアーキテクチャを設計する。
考案されたGNNアーキテクチャの上に,空間知識を学習するための幾何レベルの自己教師型学習戦略を提案する。
論文 参考訳(メタデータ) (2021-06-11T02:35:53Z) - Graph Neural Network Architecture Search for Molecular Property
Prediction [1.0965065178451106]
分子特性予測のためのグラフニューラルネットワーク(GNN)の設計と開発を自動化するNAS手法を開発した。
具体的には、量子力学および物理化学データセットにおける小分子の分子特性を予測するために、メッセージパッシングニューラルネットワーク(MPNN)の自動開発に焦点を当てる。
論文 参考訳(メタデータ) (2020-08-27T15:30:57Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
分子表現学習のための新しいフレームワークGROVERを提案する。
GROVERは、分子の豊富な構造的および意味的な情報を、巨大な未標識分子データから学習することができる。
分子表現学習において、最大のGNNであり、最大のトレーニングデータセットである、1000万個の未標識分子に1億のパラメータを持つGROVERを事前訓練します。
論文 参考訳(メタデータ) (2020-06-18T08:37:04Z) - Multi-View Graph Neural Networks for Molecular Property Prediction [67.54644592806876]
マルチビューグラフニューラルネットワーク(MV-GNN)を提案する。
MV-GNNでは,学習過程を安定させるために,自己注意型読み出しコンポーネントと不一致損失を導入する。
我々は、相互依存型メッセージパッシング方式を提案することにより、MV-GNNの表現力をさらに強化する。
論文 参考訳(メタデータ) (2020-05-17T04:46:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。