Checklist Models for Improved Output Fluency in Piano Fingering
Prediction
- URL: http://arxiv.org/abs/2209.05622v1
- Date: Mon, 12 Sep 2022 21:27:52 GMT
- Title: Checklist Models for Improved Output Fluency in Piano Fingering
Prediction
- Authors: Nikita Srivatsan and Taylor Berg-Kirkpatrick
- Abstract summary: We present a new approach for the task of predicting fingerings for piano music.
We put forward a checklist system, trained via reinforcement learning, that maintains a representation of recent predictions.
We demonstrate significant gains in performability directly attributable to improvements with respect to these metrics.
- Score: 33.52847881359949
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work we present a new approach for the task of predicting fingerings
for piano music. While prior neural approaches have often treated this as a
sequence tagging problem with independent predictions, we put forward a
checklist system, trained via reinforcement learning, that maintains a
representation of recent predictions in addition to a hidden state, allowing it
to learn soft constraints on output structure. We also demonstrate that by
modifying input representations -- which in prior work using neural models have
often taken the form of one-hot encodings over individual keys on the piano --
to encode relative position on the keyboard to the prior note instead, we can
achieve much better performance. Additionally, we reassess the use of raw
per-note labeling precision as an evaluation metric, noting that it does not
adequately measure the fluency, i.e. human playability, of a model's output. To
this end, we compare methods across several statistics which track the
frequency of adjacent finger predictions that while independently reasonable
would be physically challenging to perform in sequence, and implement a
reinforcement learning strategy to minimize these as part of our training loss.
Finally through human expert evaluation, we demonstrate significant gains in
performability directly attributable to improvements with respect to these
metrics.
Related papers
- Adaptive Pre-training Data Detection for Large Language Models via Surprising Tokens [1.2549198550400134]
Large language models (LLMs) are extensively used, but there are concerns regarding privacy, security, and copyright due to their opaque training data.
Current solutions to this problem leverage techniques explored in machine learning privacy such as Membership Inference Attacks (MIAs)
We propose an adaptive pre-training data detection method which alleviates this reliance and effectively amplify the identification.
arXiv Detail & Related papers (2024-07-30T23:43:59Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
Recent studies reveal that deep neural networks (DNNs) are prone to making overconfident predictions.
We propose a new train-time calibration method, which features a simple, plug-and-play auxiliary loss known as multi-class alignment of predictive mean confidence and predictive certainty (MACC)
Our method achieves state-of-the-art calibration performance for both in-domain and out-domain predictions.
arXiv Detail & Related papers (2023-09-06T00:56:24Z) - Ethicist: Targeted Training Data Extraction Through Loss Smoothed Soft
Prompting and Calibrated Confidence Estimation [56.57532238195446]
We propose a method named Ethicist for targeted training data extraction.
To elicit memorization, we tune soft prompt embeddings while keeping the model fixed.
We show that Ethicist significantly improves the extraction performance on a recently proposed public benchmark.
arXiv Detail & Related papers (2023-07-10T08:03:41Z) - Improving Adaptive Conformal Prediction Using Self-Supervised Learning [72.2614468437919]
We train an auxiliary model with a self-supervised pretext task on top of an existing predictive model and use the self-supervised error as an additional feature to estimate nonconformity scores.
We empirically demonstrate the benefit of the additional information using both synthetic and real data on the efficiency (width), deficit, and excess of conformal prediction intervals.
arXiv Detail & Related papers (2023-02-23T18:57:14Z) - Dynamic Scheduled Sampling with Imitation Loss for Neural Text
Generation [10.306522595622651]
We introduce Dynamic Scheduled Sampling with Imitation Loss (DySI), which maintains the schedule based solely on the training time accuracy.
DySI achieves notable improvements on standard machine translation benchmarks, and significantly improves the robustness of other text generation models.
arXiv Detail & Related papers (2023-01-31T16:41:06Z) - Conformal prediction for the design problem [72.14982816083297]
In many real-world deployments of machine learning, we use a prediction algorithm to choose what data to test next.
In such settings, there is a distinct type of distribution shift between the training and test data.
We introduce a method to quantify predictive uncertainty in such settings.
arXiv Detail & Related papers (2022-02-08T02:59:12Z) - Imputation-Free Learning from Incomplete Observations [73.15386629370111]
We introduce the importance of guided gradient descent (IGSGD) method to train inference from inputs containing missing values without imputation.
We employ reinforcement learning (RL) to adjust the gradients used to train the models via back-propagation.
Our imputation-free predictions outperform the traditional two-step imputation-based predictions using state-of-the-art imputation methods.
arXiv Detail & Related papers (2021-07-05T12:44:39Z) - Learning Prediction Intervals for Model Performance [1.433758865948252]
We propose a method to compute prediction intervals for model performance.
We evaluate our approach across a wide range of drift conditions and show substantial improvement over competitive baselines.
arXiv Detail & Related papers (2020-12-15T21:32:03Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z) - Meta-Learned Confidence for Few-shot Learning [60.6086305523402]
A popular transductive inference technique for few-shot metric-based approaches, is to update the prototype of each class with the mean of the most confident query examples.
We propose to meta-learn the confidence for each query sample, to assign optimal weights to unlabeled queries.
We validate our few-shot learning model with meta-learned confidence on four benchmark datasets.
arXiv Detail & Related papers (2020-02-27T10:22:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.