Incremental Sequence Classification with Temporal Consistency
- URL: http://arxiv.org/abs/2505.16548v1
- Date: Thu, 22 May 2025 11:37:53 GMT
- Title: Incremental Sequence Classification with Temporal Consistency
- Authors: Lucas Maystre, Gabriel Barello, Tudor Berariu, Aleix Cambray, Rares Dolga, Alvaro Ortega Gonzalez, Andrei Nica, David Barber,
- Abstract summary: We address the problem of incremental sequence classification, where predictions are updated as new elements in the sequence are revealed.<n>We leverage a temporal-consistency condition that successive predictions should satisfy to develop a novel loss function for training incremental sequence classifiers.<n>Our results show that models trained with our method are better able to distinguish promising generations from unpromising ones after observing only a few tokens.
- Score: 9.65650774513798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of incremental sequence classification, where predictions are updated as new elements in the sequence are revealed. Drawing on temporal-difference learning from reinforcement learning, we identify a temporal-consistency condition that successive predictions should satisfy. We leverage this condition to develop a novel loss function for training incremental sequence classifiers. Through a concrete example, we demonstrate that optimizing this loss can offer substantial gains in data efficiency. We apply our method to text classification tasks and show that it improves predictive accuracy over competing approaches on several benchmark datasets. We further evaluate our approach on the task of verifying large language model generations for correctness in grade-school math problems. Our results show that models trained with our method are better able to distinguish promising generations from unpromising ones after observing only a few tokens.
Related papers
- Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Uncovering mesa-optimization algorithms in Transformers [61.06055590704677]
Some autoregressive models can learn as an input sequence is processed, without undergoing any parameter changes, and without being explicitly trained to do so.
We show that standard next-token prediction error minimization gives rise to a subsidiary learning algorithm that adjusts the model as new inputs are revealed.
Our findings explain in-context learning as a product of autoregressive loss minimization and inform the design of new optimization-based Transformer layers.
arXiv Detail & Related papers (2023-09-11T22:42:50Z) - Predictive Coding beyond Correlations [59.47245250412873]
We show how one of such algorithms, called predictive coding, is able to perform causal inference tasks.
First, we show how a simple change in the inference process of predictive coding enables to compute interventions without the need to mutilate or redefine a causal graph.
arXiv Detail & Related papers (2023-06-27T13:57:16Z) - Time Series Contrastive Learning with Information-Aware Augmentations [57.45139904366001]
A key component of contrastive learning is to select appropriate augmentations imposing some priors to construct feasible positive samples.
How to find the desired augmentations of time series data that are meaningful for given contrastive learning tasks and datasets remains an open question.
We propose a new contrastive learning approach with information-aware augmentations, InfoTS, that adaptively selects optimal augmentations for time series representation learning.
arXiv Detail & Related papers (2023-03-21T15:02:50Z) - Prototypical quadruplet for few-shot class incremental learning [24.814045065163135]
We propose a novel method that improves classification robustness by identifying a better embedding space using an improved contrasting loss.
Our approach retains previously acquired knowledge in the embedding space, even when trained with new classes.
We demonstrate the effectiveness of our method by showing that the embedding space remains intact after training the model with new classes and outperforms existing state-of-the-art algorithms in terms of accuracy across different sessions.
arXiv Detail & Related papers (2022-11-05T17:19:14Z) - Checklist Models for Improved Output Fluency in Piano Fingering
Prediction [33.52847881359949]
We present a new approach for the task of predicting fingerings for piano music.
We put forward a checklist system, trained via reinforcement learning, that maintains a representation of recent predictions.
We demonstrate significant gains in performability directly attributable to improvements with respect to these metrics.
arXiv Detail & Related papers (2022-09-12T21:27:52Z) - Efficient and Differentiable Conformal Prediction with General Function
Classes [96.74055810115456]
We propose a generalization of conformal prediction to multiple learnable parameters.
We show that it achieves approximate valid population coverage and near-optimal efficiency within class.
Experiments show that our algorithm is able to learn valid prediction sets and improve the efficiency significantly.
arXiv Detail & Related papers (2022-02-22T18:37:23Z) - Diversity Enhanced Active Learning with Strictly Proper Scoring Rules [4.81450893955064]
We study acquisition functions for active learning (AL) for text classification.
We convert the Expected Loss Reduction (ELR) method to estimate the increase in (strictly proper) scores like log probability or negative mean square error.
We show that the use of mean square error and log probability with BEMPS yields robust acquisition functions.
arXiv Detail & Related papers (2021-10-27T05:02:11Z) - $k$-Neighbor Based Curriculum Sampling for Sequence Prediction [22.631763991832862]
Multi-step ahead prediction in language models is challenging due to discrepancy between training and test time processes.
We propose textitNearest-Neighbor Replacement Sampling -- a curriculum learning-based method that gradually changes an initially deterministic teacher policy.
We report our findings on two language modelling benchmarks and find that the proposed method further improves performance when used in conjunction with scheduled sampling.
arXiv Detail & Related papers (2021-01-22T20:07:29Z) - Document Ranking with a Pretrained Sequence-to-Sequence Model [56.44269917346376]
We show how a sequence-to-sequence model can be trained to generate relevance labels as "target words"
Our approach significantly outperforms an encoder-only model in a data-poor regime.
arXiv Detail & Related papers (2020-03-14T22:29:50Z) - Conditional Mutual information-based Contrastive Loss for Financial Time
Series Forecasting [12.0855096102517]
We present a representation learning framework for financial time series forecasting.
In this paper, we propose to first learn compact representations from time series data, then use the learned representations to train a simpler model for predicting time series movements.
arXiv Detail & Related papers (2020-02-18T15:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.