Variational Causal Inference
- URL: http://arxiv.org/abs/2209.05935v3
- Date: Tue, 22 Oct 2024 18:45:43 GMT
- Title: Variational Causal Inference
- Authors: Yulun Wu, Layne C. Price, Zichen Wang, Vassilis N. Ioannidis, Robert A. Barton, George Karypis,
- Abstract summary: Estimating an individual's potential outcomes under counterfactual treatments is a challenging task.
We propose a deep variational Bayesian framework that rigorously integrates two main sources of information for outcome construction.
- Score: 29.506997688252294
- License:
- Abstract: Estimating an individual's potential outcomes under counterfactual treatments is a challenging task for traditional causal inference and supervised learning approaches when the outcome is high-dimensional (e.g. gene expressions, impulse responses, human faces) and covariates are relatively limited. In this case, to construct one's outcome under a counterfactual treatment, it is crucial to leverage individual information contained in its observed factual outcome on top of the covariates. We propose a deep variational Bayesian framework that rigorously integrates two main sources of information for outcome construction under a counterfactual treatment: one source is the individual features embedded in the high-dimensional factual outcome; the other source is the response distribution of similar subjects (subjects with the same covariates) that factually received this treatment of interest.
Related papers
- Unsupervised Pairwise Causal Discovery on Heterogeneous Data using Mutual Information Measures [49.1574468325115]
Causal Discovery is a technique that tackles the challenge by analyzing the statistical properties of the constituent variables.
We question the current (possibly misleading) baseline results on the basis that they were obtained through supervised learning.
In consequence, we approach this problem in an unsupervised way, using robust Mutual Information measures.
arXiv Detail & Related papers (2024-08-01T09:11:08Z) - Contrastive Balancing Representation Learning for Heterogeneous Dose-Response Curves Estimation [34.20279432270329]
Estimating the individuals' potential response to varying treatment doses is crucial for decision-making in areas such as precision medicine and management science.
We propose a novel Contrastive balancing Representation learning Network using a partial distance measure, called CRNet, for estimating the heterogeneous dose-response curves.
arXiv Detail & Related papers (2024-03-21T08:41:53Z) - Causal Inference from Text: Unveiling Interactions between Variables [20.677407402398405]
Existing methods only account for confounding covariables that affect both treatment and outcome.
This bias arises from insufficient consideration of non-confounding covariables.
In this work, we aim to mitigate the bias by unveiling interactions between different variables.
arXiv Detail & Related papers (2023-11-09T11:29:44Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Interpretable Deep Causal Learning for Moderation Effects [0.0]
We address the problem of interpretability and targeted regularization in causal machine learning models.
We propose a novel deep counterfactual learning architecture for estimating individual treatment effects.
arXiv Detail & Related papers (2022-06-21T11:21:09Z) - Non parametric estimation of causal populations in a counterfactual
scenario [6.247939901619901]
We propose an innovative approach where the problem is reformulated as a missing data model.
The aim is to estimate the hidden distribution of emphcausal populations, defined as a function of treatment and outcome.
arXiv Detail & Related papers (2021-12-08T13:51:24Z) - Disentangled Counterfactual Recurrent Networks for Treatment Effect
Inference over Time [71.30985926640659]
We introduce the Disentangled Counterfactual Recurrent Network (DCRN), a sequence-to-sequence architecture that estimates treatment outcomes over time.
With an architecture that is completely inspired by the causal structure of treatment influence over time, we advance forecast accuracy and disease understanding.
We demonstrate that DCRN outperforms current state-of-the-art methods in forecasting treatment responses, on both real and simulated data.
arXiv Detail & Related papers (2021-12-07T16:40:28Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Causal Effect Estimation using Variational Information Bottleneck [19.6760527269791]
Causal inference is to estimate the causal effect in a causal relationship when intervention is applied.
We propose a method to estimate Causal Effect by using Variational Information Bottleneck (CEVIB)
arXiv Detail & Related papers (2021-10-26T13:46:12Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
We propose a Causal Semantic Generative model (CSG) based on a causal reasoning so that the two factors are modeled separately.
We show that CSG can identify the semantic factor by fitting training data, and this semantic-identification guarantees the boundedness of OOD generalization error.
arXiv Detail & Related papers (2020-11-03T13:16:05Z) - Learning Decomposed Representation for Counterfactual Inference [53.36586760485262]
The fundamental problem in treatment effect estimation from observational data is confounder identification and balancing.
Most of the previous methods realized confounder balancing by treating all observed pre-treatment variables as confounders, ignoring further identifying confounders and non-confounders.
We propose a synergistic learning framework to 1) identify confounders by learning representations of both confounders and non-confounders, 2) balance confounder with sample re-weighting technique, and simultaneously 3) estimate the treatment effect in observational studies via counterfactual inference.
arXiv Detail & Related papers (2020-06-12T09:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.