Data-Driven Machine Learning Models for a Multi-Objective Flapping Fin
Unmanned Underwater Vehicle Control System
- URL: http://arxiv.org/abs/2209.06369v1
- Date: Wed, 14 Sep 2022 01:55:15 GMT
- Title: Data-Driven Machine Learning Models for a Multi-Objective Flapping Fin
Unmanned Underwater Vehicle Control System
- Authors: Julian Lee and Kamal Viswanath and Jason Geder and Alisha Sharma and
Marius Pruessner and Brian Zhou
- Abstract summary: We develop a search-based inverse model that leverages a kinematics-to-thrust neural network model for control system design.
We demonstrate how a control system integrating this inverse model can make online, cycle-to-cycle adjustments to prioritize different system objectives.
- Score: 0.5522489572615558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Flapping-fin unmanned underwater vehicle (UUV) propulsion systems provide
high maneuverability for naval tasks such as surveillance and terrain
exploration. Recent work has explored the use of time-series neural network
surrogate models to predict thrust from vehicle design and fin kinematics. We
develop a search-based inverse model that leverages a kinematics-to-thrust
neural network model for control system design. Our inverse model finds a set
of fin kinematics with the multi-objective goal of reaching a target thrust and
creating a smooth kinematic transition between flapping cycles. We demonstrate
how a control system integrating this inverse model can make online,
cycle-to-cycle adjustments to prioritize different system objectives.
Related papers
- Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention [0.0]
This work investigates the state-of-the-art trajectory forecasting model Trajectron++ which we enhance by incorporating a smoothing term in its attention module.
This attention mechanism mimics human attention inspired by cognitive science research indicating limits to attention switching.
We evaluate the performance of the resulting Smooth-Trajectron++ model and compare it to the original model on various benchmarks.
arXiv Detail & Related papers (2023-05-31T09:19:55Z) - Domain-aware Control-oriented Neural Models for Autonomous Underwater
Vehicles [2.4779082385578337]
We present control-oriented parametric models with varying levels of domain-awareness.
We employ universal differential equations to construct data-driven blackbox and graybox representations of the AUV dynamics.
arXiv Detail & Related papers (2022-08-15T17:01:14Z) - Masked World Models for Visual Control [90.13638482124567]
We introduce a visual model-based RL framework that decouples visual representation learning and dynamics learning.
We demonstrate that our approach achieves state-of-the-art performance on a variety of visual robotic tasks.
arXiv Detail & Related papers (2022-06-28T18:42:27Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
Accurately modeling quadrotor's system dynamics is critical for guaranteeing agile, safe, and stable navigation.
We present a novel Physics-Inspired Temporal Convolutional Network (PI-TCN) approach to learning quadrotor's system dynamics purely from robot experience.
Our approach combines the expressive power of sparse temporal convolutions and dense feed-forward connections to make accurate system predictions.
arXiv Detail & Related papers (2022-06-07T13:51:35Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Multi-Object Tracking with Deep Learning Ensemble for Unmanned Aerial
System Applications [0.0]
Multi-object tracking (MOT) is a crucial component of situational awareness in military defense applications.
We present a robust object tracking architecture aimed to accommodate for the noise in real-time situations.
We propose a kinematic prediction model, called Deep Extended Kalman Filter (DeepEKF), in which a sequence-to-sequence architecture is used to predict entity trajectories in latent space.
arXiv Detail & Related papers (2021-10-05T13:50:38Z) - Generating Synthetic Training Data for Deep Learning-Based UAV
Trajectory Prediction [11.241614693184323]
We present an approach for generating synthetic trajectory data of unmanned-aerial-vehicles (UAVs) in image space.
We show that an RNN-based prediction model solely trained on the generated data can outperform classic reference models on a real-world UAV tracking dataset.
arXiv Detail & Related papers (2021-07-01T13:08:31Z) - GEM: Group Enhanced Model for Learning Dynamical Control Systems [78.56159072162103]
We build effective dynamical models that are amenable to sample-based learning.
We show that learning the dynamics on a Lie algebra vector space is more effective than learning a direct state transition model.
This work sheds light on a connection between learning of dynamics and Lie group properties, which opens doors for new research directions.
arXiv Detail & Related papers (2021-04-07T01:08:18Z) - Learning Monocular Depth in Dynamic Scenes via Instance-Aware Projection
Consistency [114.02182755620784]
We present an end-to-end joint training framework that explicitly models 6-DoF motion of multiple dynamic objects, ego-motion and depth in a monocular camera setup without supervision.
Our framework is shown to outperform the state-of-the-art depth and motion estimation methods.
arXiv Detail & Related papers (2021-02-04T14:26:42Z) - Model-Based Visual Planning with Self-Supervised Functional Distances [104.83979811803466]
We present a self-supervised method for model-based visual goal reaching.
Our approach learns entirely using offline, unlabeled data.
We find that this approach substantially outperforms both model-free and model-based prior methods.
arXiv Detail & Related papers (2020-12-30T23:59:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.