論文の概要: Reflectance-Guided, Contrast-Accumulated Histogram Equalization
- arxiv url: http://arxiv.org/abs/2209.06405v1
- Date: Wed, 14 Sep 2022 04:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-15 13:25:26.519194
- Title: Reflectance-Guided, Contrast-Accumulated Histogram Equalization
- Title(参考訳): 反射誘導コントラスト付加ヒストグラム等化
- Authors: Xiaomeng Wu, Takahito Kawanishi, Kunio Kashino
- Abstract要約: そこで本研究では,輝度向上のためのデータ依存要求に適応するヒストグラム等化法を提案する。
この方法は、画像コンテキストによって提供される空間情報を、識別的ヒストグラム等化のための密度推定に組み込む。
- 参考スコア(独自算出の注目度): 31.060143365318623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing image enhancement methods fall short of expectations because with
them it is difficult to improve global and local image contrast simultaneously.
To address this problem, we propose a histogram equalization-based method that
adapts to the data-dependent requirements of brightness enhancement and
improves the visibility of details without losing the global contrast. This
method incorporates the spatial information provided by image context in
density estimation for discriminative histogram equalization. To minimize the
adverse effect of non-uniform illumination, we propose defining spatial
information on the basis of image reflectance estimated with edge preserving
smoothing. Our method works particularly well for determining how the
background brightness should be adaptively adjusted and for revealing useful
image details hidden in the dark.
- Abstract(参考訳): 既存の画像強調手法は,グローバルコントラストとローカルコントラストを同時に改善することが困難であるため,期待できない。
そこで本研究では,輝度向上のためのデータ依存要求に適応し,グローバルコントラストを損なうことなく詳細視認性を向上させるヒストグラム等化法を提案する。
この方法は、画像コンテキストによって提供される空間情報を、識別的ヒストグラム等化のための密度推定に組み込む。
非均一照明の悪影響を最小限に抑えるため,エッジ保存平滑化により推定される画像反射率に基づいて空間情報を定義することを提案する。
本手法は,背景輝度を適応的に調整する方法や,暗に隠れた有用な画像詳細を明らかにするのに特に有効である。
関連論文リスト
- Leveraging Content and Context Cues for Low-Light Image Enhancement [25.97198463881292]
低照度条件はマシン認知に悪影響を及ぼし、現実のコンピュータビジョンシステムの性能を制限する。
本稿では、CLIPモデルを利用して、画像の先行と意味的ガイダンスの取得により、既存のゼロ参照低照度化を改善することを提案する。
提案手法は,画像のコントラストと色調の改善,背景背景の識別の改善に有効であることを示す。
論文 参考訳(メタデータ) (2024-12-10T17:32:09Z) - Data Augmentation via Latent Diffusion for Saliency Prediction [67.88936624546076]
残差予測モデルはラベル付きデータの限られた多様性と量によって制約される。
本研究では,実世界のシーンの複雑さと変動性を保ちながら,自然画像の編集を行うディープ・サリエンシ・予測のための新しいデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2024-09-11T14:36:24Z) - Inhomogeneous illumination image enhancement under ex-tremely low visibility condition [3.534798835599242]
濃霧を通した画像は、物体の検出や認識の曖昧化といったアプリケーションに不可欠な視覚情報を欠いているため、従来の画像処理手法を妨げている。
本稿では,構造微分・積分フィルタ(F)に基づく背景照明を適応的にフィルタし,信号情報のみを向上させる手法を提案する。
提案手法は, 極めて低視認性条件下で信号の明瞭度を著しく向上し, 既存の技術よりも優れており, 深部霧画像への応用に大きく貢献することを示した。
論文 参考訳(メタデータ) (2024-04-26T16:09:42Z) - Revealing Shadows: Low-Light Image Enhancement Using Self-Calibrated
Illumination [4.913568097686369]
自己校正イルミネーション(Self-Calibrated Illumination, SCI)は、当初RGB画像向けに開発された戦略である。
我々はSCI法を用いて、低照度条件下で通常失われる詳細を強調・明らかにする。
この選択的照明強調方法は、色情報をそのまま残し、画像の色整合性を保つ。
論文 参考訳(メタデータ) (2023-12-23T08:49:19Z) - Dimma: Semi-supervised Low Light Image Enhancement with Adaptive Dimming [0.728258471592763]
自然色を維持しながら低照度画像を強調することは、カメラ処理のバリエーションによって難しい問題である。
そこで我々はDimmaを提案する。Dimmaは、画像対の小さなセットを利用して、任意のカメラと整合する半教師付きアプローチである。
そこで我々は,照明の違いに基づいて,シーンの歪み色を生成する畳み込み混合密度ネットワークを導入することで実現した。
論文 参考訳(メタデータ) (2023-10-14T17:59:46Z) - Low-Light Image Enhancement with Illumination-Aware Gamma Correction and
Complete Image Modelling Network [69.96295927854042]
低照度環境は通常、情報の少ない大規模な暗黒地帯に繋がる。
本稿では,ガンマ補正の有効性を深層ネットワークのモデリング能力と統合することを提案する。
指数関数演算は高い計算複雑性をもたらすので、Taylor Series を用いてガンマ補正を近似することを提案する。
論文 参考訳(メタデータ) (2023-08-16T08:46:51Z) - LUT-GCE: Lookup Table Global Curve Estimation for Fast Low-light Image
Enhancement [62.17015413594777]
LUT-GCEという低照度画像強調のための効果的かつ効率的な手法を提案する。
画像全体に対する大域的な曲線を推定し、被曝と過剰露光の両方の補正を可能にする。
我々のアプローチは、特に高精細画像(例えば1080pと4k)において、推論速度の観点から、技術の現状よりも優れています。
論文 参考訳(メタデータ) (2023-06-12T12:53:06Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
低光画像強調(LLIE)技術は、画像の詳細の保存とコントラストの強化に顕著な進歩をもたらした。
これらのアプローチは、動的ノイズを効率的に緩和し、様々な低照度シナリオを収容する上で、永続的な課題に直面する。
まず,低照度画像の雑音レベルを迅速かつ高精度に推定する方法を提案する。
次に、照明と入力の一般的な制約を満たすために、Learningable Illumination Interpolator (LII) を考案する。
論文 参考訳(メタデータ) (2023-05-17T13:56:48Z) - Reflectance-Oriented Probabilistic Equalization for Image Enhancement [28.180598784444605]
本稿では,新しい2次元ヒストグラム等化手法を提案する。
強度発生と共起が互いに依存していると仮定し、強度発生の分布を導出する。
低照度画像の明るさを十分に向上すると同時に、通常の照度画像の過度の強調を回避できる。
論文 参考訳(メタデータ) (2022-09-14T04:20:06Z) - Image Harmonization with Region-wise Contrastive Learning [51.309905690367835]
本稿では,外部スタイルの融合と領域単位のコントラスト学習方式を備えた新しい画像調和フレームワークを提案する。
提案手法は, 前景と背景の相互情報を最大化することにより, 対応する正と負のサンプルをまとめることを試みる。
論文 参考訳(メタデータ) (2022-05-27T15:46:55Z) - Deep Bilateral Retinex for Low-Light Image Enhancement [96.15991198417552]
低照度画像は、低コントラスト、色歪み、測定ノイズによる視界の低下に悩まされる。
本稿では,低照度画像強調のための深層学習手法を提案する。
提案手法は最先端の手法と非常に競合し, 極めて低照度で撮影した画像の処理において, 他に比べて大きな優位性を有する。
論文 参考訳(メタデータ) (2020-07-04T06:26:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。