論文の概要: Hub-aware Random Walk Graph Embedding Methods for Classification
- arxiv url: http://arxiv.org/abs/2209.07603v3
- Date: Wed, 20 Mar 2024 22:44:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-22 20:49:10.237942
- Title: Hub-aware Random Walk Graph Embedding Methods for Classification
- Title(参考訳): ハブ対応ランダムウォークグラフ埋め込み法による分類
- Authors: Aleksandar Tomčić, Miloš Savić, Miloš Radovanović,
- Abstract要約: ノード分類問題に特化して設計されたランダムウォークに基づく2つの新しいグラフ埋め込みアルゴリズムを提案する。
提案手法は,実世界のネットワークの埋め込みを訓練した3つの分類アルゴリズムの分類性能を解析して実験的に評価する。
- 参考スコア(独自算出の注目度): 44.99833362998488
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the last two decades we are witnessing a huge increase of valuable big data structured in the form of graphs or networks. To apply traditional machine learning and data analytic techniques to such data it is necessary to transform graphs into vector-based representations that preserve the most essential structural properties of graphs. For this purpose, a large number of graph embedding methods have been proposed in the literature. Most of them produce general-purpose embeddings suitable for a variety of applications such as node clustering, node classification, graph visualisation and link prediction. In this paper, we propose two novel graph embedding algorithms based on random walks that are specifically designed for the node classification problem. Random walk sampling strategies of the proposed algorithms have been designed to pay special attention to hubs -- high-degree nodes that have the most critical role for the overall connectedness in large-scale graphs. The proposed methods are experimentally evaluated by analyzing the classification performance of three classification algorithms trained on embeddings of real-world networks. The obtained results indicate that our methods considerably improve the predictive power of examined classifiers compared to currently the most popular random walk method for generating general-purpose graph embeddings (node2vec).
- Abstract(参考訳): 過去20年で、グラフやネットワークという形で構築された貴重なビッグデータが大幅に増加するのを目撃しています。
このようなデータに従来の機械学習とデータ解析技術を適用するためには、グラフの最も重要な構造特性を保持するベクトルベースの表現に変換する必要がある。
この目的のために,本研究では多数のグラフ埋め込み手法が提案されている。
それらの多くは、ノードクラスタリング、ノード分類、グラフの可視化、リンク予測など、さまざまなアプリケーションに適した汎用的な埋め込みを生成する。
本稿では,ノード分類問題に特化して設計されたランダムウォークに基づく2つの新しいグラフ埋め込みアルゴリズムを提案する。
提案アルゴリズムのランダムウォークサンプリング戦略は、大規模グラフの全体的な連結性に最も重要な役割を果たす高次ノードであるハブに特別な注意を払うように設計されている。
提案手法は,実世界のネットワークの埋め込みを訓練した3つの分類アルゴリズムの分類性能を解析して実験的に評価する。
その結果,本手法は一般的なグラフ埋め込み(node2vec)を生成するために,現在最も普及しているランダムウォーク法と比較して,検証された分類器の予測能力を大幅に向上することが示された。
関連論文リスト
- GTAGCN: Generalized Topology Adaptive Graph Convolutional Networks [5.166599023304314]
一般化集約ネットワークとトポロジ適応グラフ畳み込みネットワークという2つの確立された手法に基づくハイブリッドアプローチを導出する。
結果は、文献の結果と同等であり、グラフ構造が探索されていないシーケンスデータとして手書きのストロークの方が優れている。
論文 参考訳(メタデータ) (2024-03-22T10:02:13Z) - Ensemble Quadratic Assignment Network for Graph Matching [52.20001802006391]
グラフマッチングはコンピュータビジョンやパターン認識において一般的に用いられる技法である。
最近のデータ駆動型アプローチは、グラフマッチングの精度を著しく改善した。
データ駆動手法と従来の手法の利点を組み合わせたグラフニューラルネットワーク(GNN)に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2024-03-11T06:34:05Z) - GrannGAN: Graph annotation generative adversarial networks [72.66289932625742]
本稿では,高次元分布をモデル化し,グラフスケルトンと整合した複雑な関係特徴構造を持つデータの新しい例を生成することの問題点を考察する。
提案するモデルは,タスクを2つのフェーズに分割することで,各データポイントのグラフ構造に制約されたデータ特徴を生成する問題に対処する。
第一に、与えられたグラフのノードに関連する機能の分布をモデル化し、第二に、ノードのフィーチャに条件付きでエッジ機能を補完する。
論文 参考訳(メタデータ) (2022-12-01T11:49:07Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
本稿では,人気相似性と地域アトラクションのパラダイムに基づく新しいグラフ埋め込み手法を提案する。
実験結果から,提案手法は最先端のグラフ埋め込みアルゴリズムよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-09-11T14:46:38Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - A Comprehensive Analytical Survey on Unsupervised and Semi-Supervised
Graph Representation Learning Methods [4.486285347896372]
本調査は,グラフ埋め込み手法のすべての主要なクラスを評価することを目的としている。
我々は,手動の特徴工学,行列分解,浅部ニューラルネットワーク,深部グラフ畳み込みネットワークなどの手法を含む分類学を用いてグラフ埋め込み手法を編成した。
我々はPyTorch GeometricおよびDGLライブラリ上で実験を設計し、異なるマルチコアCPUおよびGPUプラットフォーム上で実験を行った。
論文 参考訳(メタデータ) (2021-12-20T07:50:26Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Line Graph Neural Networks for Link Prediction [71.00689542259052]
実世界の多くのアプリケーションにおいて古典的なグラフ解析問題であるグラフリンク予測タスクについて検討する。
このフォーマリズムでは、リンク予測問題をグラフ分類タスクに変換する。
本稿では,線グラフをグラフ理論に用いて,根本的に異なる新しい経路を求めることを提案する。
特に、線グラフの各ノードは、元のグラフのユニークなエッジに対応するため、元のグラフのリンク予測問題は、グラフ分類タスクではなく、対応する線グラフのノード分類問題として等価に解決できる。
論文 参考訳(メタデータ) (2020-10-20T05:54:31Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。