論文の概要: GTAGCN: Generalized Topology Adaptive Graph Convolutional Networks
- arxiv url: http://arxiv.org/abs/2403.15077v1
- Date: Fri, 22 Mar 2024 10:02:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 17:58:20.381810
- Title: GTAGCN: Generalized Topology Adaptive Graph Convolutional Networks
- Title(参考訳): GTAGCN: 一般化トポロジ適応グラフ畳み込みネットワーク
- Authors: Sukhdeep Singh, Anuj Sharma, Vinod Kumar Chauhan,
- Abstract要約: 一般化集約ネットワークとトポロジ適応グラフ畳み込みネットワークという2つの確立された手法に基づくハイブリッドアプローチを導出する。
結果は、文献の結果と同等であり、グラフ構造が探索されていないシーケンスデータとして手書きのストロークの方が優れている。
- 参考スコア(独自算出の注目度): 5.166599023304314
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph Neural Networks (GNN) have emerged as a popular and standard approach for learning from graph-structured data. The literature on GNN highlights the potential of this evolving research area and its widespread adoption in real-life applications. However, most of the approaches are either new in concept or derived from specific techniques. Therefore, the potential of more than one approach in hybrid form has not been studied extensively, which can be well utilized for sequenced data or static data together. We derive a hybrid approach based on two established techniques as generalized aggregation networks and topology adaptive graph convolution networks that solve our purpose to apply on both types of sequenced and static nature of data, effectively. The proposed method applies to both node and graph classification. Our empirical analysis reveals that the results are at par with literature results and better for handwritten strokes as sequenced data, where graph structures have not been explored.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)は、グラフ構造化データから学習するためのポピュラーで標準的なアプローチとして登場した。
GNNの文献は、この進化する研究領域の可能性と、現実の応用において広く採用されていることを強調している。
しかし、ほとんどのアプローチは概念上新しいものであるか、特定の技術に由来するものである。
したがって、複数のハイブリッド形式のアプローチの可能性は広く研究されていないため、シーケンスデータや静的データを一緒に利用することができる。
我々は、一般化集約ネットワークとトポロジ適応グラフ畳み込みネットワークという2つの確立された手法に基づくハイブリッドアプローチを導出し、データのシーケンスと静的な性質の両方に適用する目的を効果的に解決する。
提案手法はノード分類とグラフ分類の両方に適用できる。
実験により, 結果が文献と同等であり, グラフ構造が探索されていないシーケンスデータとして手書きのストロークの方が優れていることが明らかとなった。
関連論文リスト
- GraphGLOW: Universal and Generalizable Structure Learning for Graph
Neural Networks [72.01829954658889]
本稿では,この新たな問題設定の数学的定義を紹介する。
一つのグラフ共有構造学習者と複数のグラフ固有GNNを協調する一般的なフレームワークを考案する。
十分に訓練された構造学習者は、微調整なしで、目に見えない対象グラフの適応的な構造を直接生成することができる。
論文 参考訳(メタデータ) (2023-06-20T03:33:22Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
グラフに基づく半教師付きノード分類は、研究価値と重要性の高い多くのアプリケーションにおいて最先端のアプローチであることが示されている。
本稿では、ハイパーグラフ構造学習とハイパーグラフ表現学習を同時に統合した新しいデュアル接続モデルであるデュアルハイパーグラフニューラルネットワーク(DualHGNN)を提案する。
論文 参考訳(メタデータ) (2023-06-07T07:40:04Z) - Generative Graph Neural Networks for Link Prediction [13.643916060589463]
欠落したリンクを推測したり、観測されたグラフに基づいて急激なリンクを検出することは、グラフデータ分析における長年の課題である。
本稿では,GraphLPと呼ばれるネットワーク再構成理論に基づく,新しい,根本的に異なるリンク予測アルゴリズムを提案する。
リンク予測に使用される識別ニューラルネットワークモデルとは異なり、GraphLPは生成可能であり、ニューラルネットワークベースのリンク予測の新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2022-12-31T10:07:19Z) - Relation Embedding based Graph Neural Networks for Handling
Heterogeneous Graph [58.99478502486377]
我々は、同種GNNが不均一グラフを扱うのに十分な能力を持つように、シンプルで効率的なフレームワークを提案する。
具体的には、エッジ型関係と自己ループ接続の重要性を埋め込むために、関係1つのパラメータのみを使用する関係埋め込みベースのグラフニューラルネットワーク(RE-GNN)を提案する。
論文 参考訳(メタデータ) (2022-09-23T05:24:18Z) - Hub-aware Random Walk Graph Embedding Methods for Classification [44.99833362998488]
ノード分類問題に特化して設計されたランダムウォークに基づく2つの新しいグラフ埋め込みアルゴリズムを提案する。
提案手法は,実世界のネットワークの埋め込みを訓練した3つの分類アルゴリズムの分類性能を解析して実験的に評価する。
論文 参考訳(メタデータ) (2022-09-15T20:41:18Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
最適グラフ構造を学習するための二段階最適化手法を提案する。
また、時間的複雑さをさらに軽減するために、低ランク近似モデルについても検討する。
論文 参考訳(メタデータ) (2022-05-06T03:37:00Z) - SHGNN: Structure-Aware Heterogeneous Graph Neural Network [77.78459918119536]
本稿では、上記の制約に対処する構造対応不均一グラフニューラルネットワーク(SHGNN)を提案する。
まず,メタパス内の中間ノードの局所構造情報を取得するために,特徴伝搬モジュールを利用する。
次に、ツリーアテンションアグリゲータを使用して、グラフ構造情報をメタパス上のアグリゲーションモジュールに組み込む。
最後に、メタパスアグリゲータを利用して、異なるメタパスから集約された情報を融合する。
論文 参考訳(メタデータ) (2021-12-12T14:18:18Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
本稿では,AGE という逆グラフ埋め込みのための頑健なフレームワークを提案する。
AGEは、暗黙の分布から強化された負のサンプルとして偽の隣接ノードを生成する。
本フレームワークでは,3種類のグラフデータを扱う3つのモデルを提案する。
論文 参考訳(メタデータ) (2021-05-22T07:05:48Z) - Adaptive Filters in Graph Convolutional Neural Networks [0.0]
グラフニューラルネットワーク(GNN)は,グラフ構造化データ処理の可能性から注目されている。
本稿では,グラフ上で空間畳み込みを行う手法を提案する入力に対して,ConvGNNの振る舞いを適応させる新しい手法を提案する。
論文 参考訳(メタデータ) (2021-05-21T14:36:39Z) - Learning the Implicit Semantic Representation on Graph-Structured Data [57.670106959061634]
グラフ畳み込みネットワークにおける既存の表現学習手法は主に、各ノードの近傍を知覚全体として記述することで設計される。
本稿では,グラフの潜在意味パスを学習することで暗黙的な意味を探索する意味グラフ畳み込みネットワーク(sgcn)を提案する。
論文 参考訳(メタデータ) (2021-01-16T16:18:43Z) - Representation Learning of Graphs Using Graph Convolutional Multilayer
Networks Based on Motifs [17.823543937167848]
mGCMNはノードの特徴情報とグラフの高階局所構造を利用する新しいフレームワークである。
グラフニューラルネットワークの学習効率を大幅に改善し、新たな学習モードの確立を促進する。
論文 参考訳(メタデータ) (2020-07-31T04:18:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。