論文の概要: CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation
- arxiv url: http://arxiv.org/abs/2209.07606v1
- Date: Thu, 15 Sep 2022 21:02:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-19 12:07:50.989412
- Title: CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation
- Title(参考訳): CES-KD: ガイド付き知識蒸留のためのカリキュラムベースのエキスパート選択
- Authors: Ibtihel Amara, Maryam Ziaeefard, Brett H. Meyer, Warren Gross and
James J. Clark
- Abstract要約: 本稿では,知識蒸留のためのカリキュラムエキスパート選択法(CES-KD)を提案する。
CES-KDは、階層化された教育カリキュラムを使用して学生ネットワークを徐々にガイドすべきという仮説に基づいている。
具体的には、画像の分類の難しさに起因したカリキュラムに基づいて、入力画像ごとに1人の教師を選択する段階的なTAベースのKD手法を提案する。
- 参考スコア(独自算出の注目度): 4.182345120164705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge distillation (KD) is an effective tool for compressing deep
classification models for edge devices. However, the performance of KD is
affected by the large capacity gap between the teacher and student networks.
Recent methods have resorted to a multiple teacher assistant (TA) setting for
KD, which sequentially decreases the size of the teacher model to relatively
bridge the size gap between these models. This paper proposes a new technique
called Curriculum Expert Selection for Knowledge Distillation (CES-KD) to
efficiently enhance the learning of a compact student under the capacity gap
problem. This technique is built upon the hypothesis that a student network
should be guided gradually using stratified teaching curriculum as it learns
easy (hard) data samples better and faster from a lower (higher) capacity
teacher network. Specifically, our method is a gradual TA-based KD technique
that selects a single teacher per input image based on a curriculum driven by
the difficulty in classifying the image. In this work, we empirically verify
our hypothesis and rigorously experiment with CIFAR-10, CIFAR-100, CINIC-10,
and ImageNet datasets and show improved accuracy on VGG-like models, ResNets,
and WideResNets architectures.
- Abstract(参考訳): 知識蒸留(KD)はエッジデバイスの深い分類モデルを圧縮するための有効なツールである。
しかし,KDの性能は,教師ネットワークと学生ネットワークの容量ギャップに大きな影響を受けている。
近年, 教師モデルのサイズを連続的に減少させ, モデル間のサイズギャップを相対的に橋渡しする, KD のための多元的教師アシスタント (TA) 方式が提案されている。
本稿では, 容量ギャップ問題下でのコンパクトな学生の学習を効率的に促進するための, 知識蒸留のためのカリキュラムエキスパート選択 (CES-KD) と呼ばれる新しい手法を提案する。
本手法は,より低い(高い)能力を持つ教師ネットワークから,より容易に(堅い)データサンプルを学習し,階層化された教育カリキュラムを用いて,学生ネットワークを段階的に指導するべきであるという仮説に基づいている。
具体的には、画像の分類が困難であるカリキュラムに基づいて、入力画像ごとに1人の教師を選択する段階的なTAベースのKD手法を提案する。
本研究では,我々の仮説を実証的に検証し,CIFAR-10,CIFAR-100,CINIC-10,ImageNetデータセットを用いて厳密に実験し,VGGライクなモデル,ResNets,WideResNetsアーキテクチャの精度向上を示す。
関連論文リスト
- Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - Adaptive Teaching with Shared Classifier for Knowledge Distillation [6.03477652126575]
知識蒸留(KD)は、教師ネットワークから学生ネットワークへ知識を伝達する技術である。
共有分類器(ATSC)を用いた適応型授業を提案する。
提案手法は,CIFAR-100とImageNetのデータセットに対して,単教師と多教師の両方のシナリオで最新の結果が得られる。
論文 参考訳(メタデータ) (2024-06-12T08:51:08Z) - MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution [6.983043882738687]
画像超解像のためのMTKD(Multi-Teacher Knowledge Distillation)フレームワークを提案する。
複数の教師の利点を生かし、これらの教師モデルのアウトプットを統合して強化する。
画像超解像のための5つの一般的なKD法と比較することにより,提案手法の有効性を十分に評価する。
論文 参考訳(メタデータ) (2024-04-15T08:32:41Z) - Revisiting Knowledge Distillation for Autoregressive Language Models [88.80146574509195]
知識蒸留(KD)を改善するための簡易かつ効果的な適応型教育法(ATKD)を提案する。
ATKDの中核は、ロート学習を減らし、教育をより多様で柔軟なものにすることだ。
8つのLMタスクの実験は、ATKDの助けを借りて、様々なベースラインのKD手法が一貫した、重要なパフォーマンス向上を達成することを示した。
論文 参考訳(メタデータ) (2024-02-19T07:01:10Z) - Comparative Knowledge Distillation [102.35425896967791]
伝統的な知識蒸留(KD)は、頻繁な推論のために教師モデルに容易にアクセスできることを前提としている。
本稿では,教師モデルにおけるサンプルの解釈の微妙な違いを学生モデルに理解させるための比較知識蒸留(CKD)を提案する。
CKDは、アートデータ拡張とKDテクニックの状態を一貫して上回る。
論文 参考訳(メタデータ) (2023-11-03T21:55:33Z) - BD-KD: Balancing the Divergences for Online Knowledge Distillation [12.27903419909491]
我々はBD-KD: オンライン知識蒸留のための多様性のバランスをとることを提案する。
逆発散と前方発散の適応的バランスは、訓練戦略の焦点をコンパクトな学生ネットワークにシフトさせることを示す。
本研究では,このバランス設計を学生蒸留損失のレベルで実施することにより,コンパクトな学生ネットワークの性能精度と校正性を両立させることを実証する。
論文 参考訳(メタデータ) (2022-12-25T22:27:32Z) - Knowledge Distillation with Representative Teacher Keys Based on
Attention Mechanism for Image Classification Model Compression [1.503974529275767]
知識蒸留(KD)はモデルパラメータを減らすためのモデル圧縮の効果的な方法の1つとして認識されている。
注意機構にヒントを得て,代表教師キー(RTK)と呼ばれる新しいKD手法を提案する。
提案するRTKは,最先端の注意に基づくKD手法の分類精度を効果的に向上させることができる。
論文 参考訳(メタデータ) (2022-06-26T05:08:50Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - How and When Adversarial Robustness Transfers in Knowledge Distillation? [137.11016173468457]
本稿では,教師モデルから学生モデルへの知識蒸留(KD)における対向ロバスト性の移行について検討する。
我々は,標準的なKDトレーニングが対向的堅牢性を維持するのに失敗することを示すとともに,KDIGA(入力勾配アライメント)を併用したKDを提案する。
特定の前提の下では、提案したKDIGAを用いた学生モデルは、少なくとも教師モデルと同じ確証された堅牢性を達成することができることを証明している。
論文 参考訳(メタデータ) (2021-10-22T21:30:53Z) - Boosting Light-Weight Depth Estimation Via Knowledge Distillation [21.93879961636064]
本稿では,最小限の計算資源を用いて深度マップを正確に推定できる軽量ネットワークを提案する。
モデル複雑性を最大に低減するコンパクトなモデルアーキテクチャを設計することで、これを実現する。
本手法は, パラメータの1%しか使用せず, 最先端手法に匹敵する性能を実現する。
論文 参考訳(メタデータ) (2021-05-13T08:42:42Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。