論文の概要: Adaptive Teaching with Shared Classifier for Knowledge Distillation
- arxiv url: http://arxiv.org/abs/2406.08528v2
- Date: Fri, 14 Jun 2024 08:19:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-17 17:54:01.949249
- Title: Adaptive Teaching with Shared Classifier for Knowledge Distillation
- Title(参考訳): 知識蒸留のための共有分類器を用いた適応型指導
- Authors: Jaeyeon Jang, Young-Ik Kim, Jisu Lim, Hyeonseong Lee,
- Abstract要約: 知識蒸留(KD)は、教師ネットワークから学生ネットワークへ知識を伝達する技術である。
共有分類器(ATSC)を用いた適応型授業を提案する。
提案手法は,CIFAR-100とImageNetのデータセットに対して,単教師と多教師の両方のシナリオで最新の結果が得られる。
- 参考スコア(独自算出の注目度): 6.03477652126575
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Knowledge distillation (KD) is a technique used to transfer knowledge from an overparameterized teacher network to a less-parameterized student network, thereby minimizing the incurred performance loss. KD methods can be categorized into offline and online approaches. Offline KD leverages a powerful pretrained teacher network, while online KD allows the teacher network to be adjusted dynamically to enhance the learning effectiveness of the student network. Recently, it has been discovered that sharing the classifier of the teacher network can significantly boost the performance of the student network with only a minimal increase in the number of network parameters. Building on these insights, we propose adaptive teaching with a shared classifier (ATSC). In ATSC, the pretrained teacher network self-adjusts to better align with the learning needs of the student network based on its capabilities, and the student network benefits from the shared classifier, enhancing its performance. Additionally, we extend ATSC to environments with multiple teachers. We conduct extensive experiments, demonstrating the effectiveness of the proposed KD method. Our approach achieves state-of-the-art results on the CIFAR-100 and ImageNet datasets in both single-teacher and multiteacher scenarios, with only a modest increase in the number of required model parameters. The source code is publicly available at https://github.com/random2314235/ATSC.
- Abstract(参考訳): 知識蒸留 (KD) は、過度にパラメータ化された教師ネットワークから低パラメータの学生ネットワークへ知識を伝達する手法であり、結果として得られた性能損失を最小限に抑える。
KDメソッドはオフラインおよびオンラインのアプローチに分類される。
オンラインKDは教師ネットワークを動的に調整し、生徒ネットワークの学習効果を高める。
近年,教師ネットワークの分類器の共有は,ネットワークパラメータの最小限の増加に留まらず,学生ネットワークの性能を大幅に向上させることが判明した。
これらの知見に基づいて,共有分類器(ATSC)を用いた適応型教育を提案する。
ATSCでは、事前訓練された教師ネットワークは、その能力に基づいて学生ネットワークの学習ニーズに合わせた自己調整を行い、学生ネットワークは共有分類器の恩恵を受け、その性能を向上する。
さらに、ATSCを複数の教師による環境に拡張する。
提案手法の有効性を実証した広範囲な実験を行った。
提案手法は,CIFAR-100とImageNetのデータセットを単教師と複数教師の両方のシナリオで実現し,必要なモデルパラメータの数もわずかに増加している。
ソースコードはhttps://github.com/random2314235/ATSCで公開されている。
関連論文リスト
- Exploring and Enhancing the Transfer of Distribution in Knowledge Distillation for Autoregressive Language Models [62.5501109475725]
知識蒸留(KD)は、より小さな学生モデルを模倣するように訓練することで、大きな教師モデルを圧縮する技術である。
本稿では、教師ネットワークが小さなオンラインモジュールを統合し、学生モデルと同時学習するオンライン知識蒸留(OKD)について紹介する。
OKDは、様々なモデルアーキテクチャやサイズにおけるリードメソッドのパフォーマンスを達成または超え、トレーニング時間を最大4倍に短縮する。
論文 参考訳(メタデータ) (2024-09-19T07:05:26Z) - BD-KD: Balancing the Divergences for Online Knowledge Distillation [12.27903419909491]
我々はBD-KD: オンライン知識蒸留のための多様性のバランスをとることを提案する。
逆発散と前方発散の適応的バランスは、訓練戦略の焦点をコンパクトな学生ネットワークにシフトさせることを示す。
本研究では,このバランス設計を学生蒸留損失のレベルで実施することにより,コンパクトな学生ネットワークの性能精度と校正性を両立させることを実証する。
論文 参考訳(メタデータ) (2022-12-25T22:27:32Z) - CES-KD: Curriculum-based Expert Selection for Guided Knowledge
Distillation [4.182345120164705]
本稿では,知識蒸留のためのカリキュラムエキスパート選択法(CES-KD)を提案する。
CES-KDは、階層化された教育カリキュラムを使用して学生ネットワークを徐々にガイドすべきという仮説に基づいている。
具体的には、画像の分類の難しさに起因したカリキュラムに基づいて、入力画像ごとに1人の教師を選択する段階的なTAベースのKD手法を提案する。
論文 参考訳(メタデータ) (2022-09-15T21:02:57Z) - Better Teacher Better Student: Dynamic Prior Knowledge for Knowledge
Distillation [70.92135839545314]
本研究では,教師の持つ特徴の一部を,特徴蒸留前の先行知識として統合した動的事前知識(DPK)を提案する。
DPKは,教員モデルと生徒モデルのパフォーマンスを正に相関させ,より大きな教員を適用することで生徒の精度をさらに高めることができる。
論文 参考訳(メタデータ) (2022-06-13T11:52:13Z) - Augmenting Knowledge Distillation With Peer-To-Peer Mutual Learning For
Model Compression [2.538209532048867]
相互学習(ML)は、複数の単純な学生ネットワークが知識を共有することで恩恵を受ける、代替戦略を提供する。
そこで本研究では,KDとMLを併用して,より優れたパフォーマンスを実現する,単教師多学生フレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-21T09:59:31Z) - Densely Guided Knowledge Distillation using Multiple Teacher Assistants [5.169724825219126]
モデルサイズを徐々に小さくする複数の教師アシスタントを用いた知識蒸留法を提案する。
また,ミニバッチ毎に,教師や教師のアシスタントがランダムにドロップされるような授業も設計する。
これは、学生ネットワークの教育効率を向上させるために、レギュラーライザとして機能する。
論文 参考訳(メタデータ) (2020-09-18T13:12:52Z) - Point Adversarial Self Mining: A Simple Method for Facial Expression
Recognition [79.75964372862279]
本稿では,表情認識における認識精度を向上させるために,PASM(Point Adversarial Self Mining)を提案する。
PASMは、目標タスクに関連する最も情報性の高い位置を見つけるために、ポイント敵攻撃法と訓練された教師ネットワークを使用する。
適応学習教材の生成と教師/学生の更新を複数回行うことができ、ネットワーク能力が反復的に向上する。
論文 参考訳(メタデータ) (2020-08-26T06:39:24Z) - Knowledge Transfer via Dense Cross-Layer Mutual-Distillation [24.24969126783315]
教師と学生のネットワークをゼロから協調的に訓練するDense Cross-layer Mutual-distillation (DCM)を提案する。
KT性能を高めるために,付加型分類器を用いた層間双方向KD操作を導入する。
提案手法は様々なKTタスクでテストし,関連する手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2020-08-18T09:25:08Z) - Interactive Knowledge Distillation [79.12866404907506]
本稿では,効率的な知識蒸留のための対話型指導戦略を活用するために,対話型知識蒸留方式を提案する。
蒸留工程では,教師と学生のネットワーク間の相互作用を交換操作により行う。
教員ネットワークの典型的な設定による実験により,IAKDで訓練された学生ネットワークは,従来の知識蒸留法で訓練された学生ネットワークよりも優れた性能を示した。
論文 参考訳(メタデータ) (2020-07-03T03:22:04Z) - Heterogeneous Knowledge Distillation using Information Flow Modeling [82.83891707250926]
教師モデルの様々な層を流れる情報の流れをモデル化して機能する新しいKD手法を提案する。
提案手法は, トレーニング過程の異なる段階において, 適切な監督手法を用いて, 上記の制限を克服することができる。
論文 参考訳(メタデータ) (2020-05-02T06:56:56Z) - Efficient Crowd Counting via Structured Knowledge Transfer [122.30417437707759]
クラウドカウントはアプリケーション指向のタスクであり、その推論効率は現実世界のアプリケーションにとって不可欠である。
本稿では,学生ネットワークを軽量かつ高効率に構築する構造的知識伝達フレームワークを提案する。
我々のモデルはNvidia 1080 GPUで最低6.5$times$のスピードアップを取得し、最先端のパフォーマンスも達成しています。
論文 参考訳(メタデータ) (2020-03-23T08:05:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。