Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems
- URL: http://arxiv.org/abs/2209.08080v4
- Date: Sat, 15 Jun 2024 19:22:30 GMT
- Title: Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems
- Authors: Titus Franz, Sebastian Geier, Clément Hainaut, Adrian Braemer, Nithiwadee Thaicharoen, Moritz Hornung, Eduard Braun, Martin Gärttner, Gerhard Zürn, Matthias Weidemüller,
- Abstract summary: We experimentally observe robust features in the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ- and Ising Hamiltonians.
In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An important step towards a comprehensive understanding of far-from-equilibrium dynamics of quantum many-body systems is the identification of unifying features that are independent of microscopic details of the system. We experimentally observe such robust features in the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ- and Ising Hamiltonians. We realize these Heisenberg spin models with tunable anisotropy parameter and power-law interactions in an ensemble of Rydberg atoms by encoding the spin in suitable Rydberg state combinations. We consistently observe stretched-exponential relaxation of magnetization for all considered spin models, collapsing onto a single curve after appropriate rescaling of time. This robust short-time relaxation behavior is explained by a perturbative treatment that exploits the strong disorder in pairwise couplings, which leads to a description in terms of approximately independent pairs of spins. In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion, which remain at least partially conserved on a timescale exceeding the duration of the relaxation dynamics of the magnetization.
Related papers
- Hilbert Space Fragmentation and Subspace Scar Time-Crystallinity in
Driven Homogeneous Central-Spin Models [5.9969431417128405]
We study the stroboscopic non-equilibrium quantum dynamics of periodically kicked Hamiltonians involving homogeneous central-spin interactions.
The system exhibits a strong fragmentation of Hilbert space into four-dimensional Floquet-Krylov subspaces.
arXiv Detail & Related papers (2024-02-28T02:30:40Z) - Dynamics of inhomogeneous spin ensembles with all-to-all interactions:
breaking permutational invariance [49.1574468325115]
We investigate the consequences of introducing non-uniform initial conditions in the dynamics of spin ensembles characterized by all-to-all interactions.
We find that the dynamics of the spin ensemble now spans a more expansive effective Hilbert space.
arXiv Detail & Related papers (2023-09-19T16:44:14Z) - Spin-phonon decoherence in solid-state paramagnetic defects from first
principles [79.4957965474334]
Paramagnetic defects in diamond and hexagonal boron nitride possess a unique combination of spin and optical properties that make them solid-state qubits.
Despite the coherence of these spin qubits being critically limited by spin-phonon relaxation, a full understanding of this process is not yet available.
We demonstrate that low-frequency two-phonon modulations of the zero-field splitting are responsible for spin relaxation and decoherence.
arXiv Detail & Related papers (2022-12-22T13:48:05Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Semiclassical simulations predict glassy dynamics for disordered
Heisenberg models [0.0]
We numerically study out-of-equilibrium dynamics in a family of Heisenberg models with $1/r6$ power-law interactions and positional disorder.
We find that both quantities display robust glassy behavior for almost any value of the anisotropy parameter of the Heisenberg Hamiltonian.
arXiv Detail & Related papers (2021-07-28T12:26:57Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Non-equilibrium non-Markovian steady-states in open quantum many-body
systems: Persistent oscillations in Heisenberg quantum spin chains [68.8204255655161]
We investigate the effect of a non-Markovian, structured reservoir on an open Heisenberg spin chain.
We establish a coherent self-feedback mechanism as the reservoir couples frequency-dependent to the spin chain.
arXiv Detail & Related papers (2020-06-05T09:16:28Z) - Vibrational dressing in Kinetically Constrained Rydberg Spin Systems [0.0]
We discuss a facilitated spin system inspired by recent progress in the realization of Rydberg quantum simulators.
This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations.
We show that this leads to the formation of polaronic quasiparticles which are formed by many-body spin states dressed by phonons.
arXiv Detail & Related papers (2020-02-28T19:23:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.