Vibrational dressing in Kinetically Constrained Rydberg Spin Systems
- URL: http://arxiv.org/abs/2003.00034v2
- Date: Mon, 20 Jul 2020 08:41:26 GMT
- Title: Vibrational dressing in Kinetically Constrained Rydberg Spin Systems
- Authors: Paolo P. Mazza, Richard Schmidt, Igor Lesanovsky
- Abstract summary: We discuss a facilitated spin system inspired by recent progress in the realization of Rydberg quantum simulators.
This platform allows to control and investigate the interplay between facilitation dynamics and the coupling of spin degrees of freedom to lattice vibrations.
We show that this leads to the formation of polaronic quasiparticles which are formed by many-body spin states dressed by phonons.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum spin systems with kinetic constraints have become paradigmatic for
exploring collective dynamical behaviour in many-body systems. Here we discuss
a facilitated spin system which is inspired by recent progress in the
realization of Rydberg quantum simulators. This platform allows to control and
investigate the interplay between facilitation dynamics and the coupling of
spin degrees of freedom to lattice vibrations. Developing a minimal model, we
show that this leads to the formation of polaronic quasiparticle excitations
which are formed by many-body spin states dressed by phonons. We investigate in
detail the properties of these quasiparticles, such as their dispersion
relation, effective mass and the quasiparticle weight. Rydberg lattice quantum
simulators are particularly suited for studying this phonon-dressed kinetically
constrained dynamics as their exaggerated length scales permit the
site-resolved monitoring of spin and phonon degrees of freedom.
Related papers
- Realization of a Rydberg-dressed extended Bose Hubbard model [0.0]
We realize an effective one-dimensional extended Bose-Hubbard model (eBHM)
We probe the correlated out-of-equilibrium dynamics of extended-range repulsively-bound pairs at low filling, and kinetically-constrained "hard rods" at half filling.
Our results demonstrate the versatility of Rydberg dressing in engineering itinerant optical lattice-based quantum simulators.
arXiv Detail & Related papers (2024-05-30T15:07:59Z) - Observing Topological Insulator Phases with a Programmable Quantum
Simulator [5.118772741438762]
Topological insulators exhibit fascinating properties such as the appearance of edge states protected by symmetries.
We experimentally implement a modified SSH model with long-range interacting spin systems in one-dimensional trapped ion crystals of up to $22$ spins.
arXiv Detail & Related papers (2024-01-18T20:10:28Z) - A Floquet-Rydberg quantum simulator for confinement in $\mathbb{Z}_2$
gauge theories [44.99833362998488]
Recent advances in the field of quantum technologies have opened up the road for the realization of small-scale quantum simulators.
We present a scalable Floquet scheme for the quantum simulation of the real-time dynamics in a $mathbbZ$ LGT.
We show that an observation of gauge-invariant confinement dynamics in the Floquet-Rydberg setup is at reach of current experimental techniques.
arXiv Detail & Related papers (2023-11-28T13:01:24Z) - Strong Spin-Motion Coupling in the Ultrafast Dynamics of Rydberg Atoms [0.0]
We show a strong spin-motion coupling emerging from the large variation of the interaction potential over the wavefunction spread.
We propose a novel approach to tune arbitrarily the strength of the spin-motion coupling relative to the motional energy scale set by trapping potentials.
arXiv Detail & Related papers (2023-11-27T07:04:02Z) - Scalable spin squeezing in two-dimensional arrays of dipolar large-$S$
spins [0.0]
We show that spin-spin interactions lead to scalable spin squeezing along the non-equilibrium unitary evolution in a coherent spin state.
For sufficiently small quadratic shifts, the spin squeezing dynamics is akin to that produced by the paradigmatic one-axis-twisting (OAT) model.
Spin squeezing with OAT-like scaling is shown to be protected by the robustness of long-range ferromagnetic order to quadratic shifts.
arXiv Detail & Related papers (2023-09-11T10:32:24Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Observation of anisotropy-independent magnetization dynamics in spatially disordered Heisenberg spin systems [0.0]
We experimentally observe robust features in the magnetization relaxation dynamics of disordered Heisenberg XX-, XXZ- and Ising Hamiltonians.
In numerical simulations of small systems, we show that these pairs of spins constitute approximate local integrals of motion.
arXiv Detail & Related papers (2022-09-16T17:44:49Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.