論文の概要: A study on the deviations in performance of FNNs and CNNs in the realm
of grayscale adversarial images
- arxiv url: http://arxiv.org/abs/2209.08262v1
- Date: Sat, 17 Sep 2022 06:25:14 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 16:43:07.623930
- Title: A study on the deviations in performance of FNNs and CNNs in the realm
of grayscale adversarial images
- Title(参考訳): グレースケール対角画像領域におけるFNNとCNNの性能差に関する研究
- Authors: Durga Shree Nagabushanam, Steve Mathew, Chiranji Lal Chowdhary
- Abstract要約: ノイズ摂動を伴う画像の分類において,ニューラルネットワークはより精度の低い傾向を示す。
本研究では,手書き桁データセットであるMNISTを用いて,1と2の隠蔽層を持つFNNと3,4,6,8の畳み込みを持つCNNを用いて,それらの精度を分析した。
FNNは、ノイズの強度に関係なく、分類精度が85%以上であることを示した。
- 参考スコア(独自算出の注目度): 0.3437656066916039
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural Networks are prone to having lesser accuracy in the classification of
images with noise perturbation. Convolutional Neural Networks, CNNs are known
for their unparalleled accuracy in the classification of benign images. But our
study shows that they are extremely vulnerable to noise addition while
Feed-forward Neural Networks, FNNs show very less correspondence with noise
perturbation, maintaining their accuracy almost undisturbed. FNNs are observed
to be better at classifying noise-intensive, single-channeled images that are
just sheer noise to human vision. In our study, we have used the hand-written
digits dataset, MNIST with the following architectures: FNNs with 1 and 2
hidden layers and CNNs with 3, 4, 6 and 8 convolutions and analyzed their
accuracies. FNNs stand out to show that irrespective of the intensity of noise,
they have a classification accuracy of more than 85%. In our analysis of CNNs
with this data, the deceleration of classification accuracy of CNN with 8
convolutions was half of that of the rest of the CNNs. Correlation analysis and
mathematical modelling of the accuracy trends act as roadmaps to these
conclusions.
- Abstract(参考訳): ニューラルネットワークはノイズ摂動を伴う画像の分類において、より精度の低い傾向にある。
畳み込みニューラルネットワーク、cnnは、良性画像の分類において並列性のない精度で知られている。
しかし、我々の研究では、フィードフォワードニューラルネットワークのFNNではノイズの摂動との対応性が極めて低く、精度はほぼ乱れていないことが示されている。
FNNは、人間の視覚に強いノイズである、ノイズ集約的な単一チャネル画像の分類に優れていることが観察されている。
本研究では,手書き桁データセットであるMNISTを用いて,1と2の隠蔽層を持つFNNと3,4,6,8の畳み込みを持つCNNを用いて,それらの精度を分析した。
FNNは、ノイズの強度に関係なく、分類精度が85%以上であることを示した。
このデータを用いてCNNを解析したところ、CNNの分類精度の低下はCNNの他の半分であった。
精度傾向の相関分析と数学的モデリングは、これらの結論へのロードマップとして作用する。
関連論文リスト
- CNN2GNN: How to Bridge CNN with GNN [59.42117676779735]
蒸留によりCNNとGNNを統一する新しいCNN2GNNフレームワークを提案する。
Mini-ImageNetにおける蒸留ブースターの2層GNNの性能は、ResNet152のような数十層を含むCNNよりもはるかに高い。
論文 参考訳(メタデータ) (2024-04-23T08:19:08Z) - OA-CNNs: Omni-Adaptive Sparse CNNs for 3D Semantic Segmentation [70.17681136234202]
設計上の違いを再検討し、スパースCNNが達成できることの限界をテストする。
本稿では,このギャップを埋めるために,適応受容場(親和性)と適応関係という2つの重要な要素を提案する。
この調査により、軽量モジュールを統合するネットワークのファミリーであるOmni-Adaptive 3D CNN(OA-CNN)が開発された。
論文 参考訳(メタデータ) (2024-03-21T14:06:38Z) - Decoupled Mixup for Generalized Visual Recognition [71.13734761715472]
視覚認識のためのCNNモデルを学習するための新しい「デカップリング・ミクスアップ」手法を提案する。
本手法は,各画像を識別領域と雑音発生領域に分離し,これらの領域を均一に組み合わせてCNNモデルを訓練する。
実験結果から,未知のコンテキストからなるデータに対する本手法の高一般化性能を示す。
論文 参考訳(メタデータ) (2022-10-26T15:21:39Z) - Improving the Accuracy and Robustness of CNNs Using a Deep CCA Neural
Data Regularizer [2.026424957803652]
畳み込みニューラルネットワーク(CNN)がオブジェクト認識においてより正確になるにつれて、それらの表現は霊長類の視覚システムとよりよく似ている。
この問題に対処する以前の試みは、正規化法の制限により、精度が極端に向上した。
我々は,CNNのイメージ表現とサル視覚野との類似性を最適化するために,ディープ相関解析(DCCA)を用いた新しいCNN用ニューラルデータ正規化器を開発した。
論文 参考訳(メタデータ) (2022-09-06T15:40:39Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - Receptive Field Regularization Techniques for Audio Classification and
Tagging with Deep Convolutional Neural Networks [7.9495796547433395]
CNNの受容場(RF)のチューニングは,その一般化に不可欠であることを示す。
我々は,CNNのRFを制御し,結果のアーキテクチャを体系的にテストする,いくつかの系統的なアプローチを提案する。
論文 参考訳(メタデータ) (2021-05-26T08:36:29Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Homography Estimation with Convolutional Neural Networks Under
Conditions of Variance [0.0]
畳み込みニューラルネットワーク(CNN)を用いた最近の2つの手法の性能解析を行った。
CNNは、ノイズに対してより堅牢であるように訓練できるが、ノイズのないケースでは精度が低い。
我々は,CNNを特定の音の大きさに訓練すると,CNNが最高の性能を示す騒音レベルに対して,Goldilocks Zoneが生じることを示す。
論文 参考訳(メタデータ) (2020-10-02T15:11:25Z) - Hybrid Tiled Convolutional Neural Networks for Text Sentiment
Classification [3.0204693431381515]
階層型畳み込みニューラルネットワーク(CNN)のアーキテクチャを調整し、感情分析のための健全な特徴の抽出を改善する。
NLP分野におけるタイル付きCNNの大きな欠点は、その柔軟性のないフィルタ構造であることを認識し、我々はハイブリッドタイル付きCNNと呼ばれる新しいアーキテクチャを提案する。
IMDBの映画レビューとSemEval 2017のデータセットの実験は、ハイブリッドタイルCNNの効率を実証している。
論文 参考訳(メタデータ) (2020-01-31T14:08:15Z) - Approximation and Non-parametric Estimation of ResNet-type Convolutional
Neural Networks [52.972605601174955]
本稿では,ResNet型CNNが重要な関数クラスにおいて最小誤差率を達成可能であることを示す。
Barron と H'older のクラスに対する前述のタイプの CNN の近似と推定誤差率を導出する。
論文 参考訳(メタデータ) (2019-03-24T19:42:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。