論文の概要: On PAC Learning Halfspaces in Non-interactive Local Privacy Model with
Public Unlabeled Data
- arxiv url: http://arxiv.org/abs/2209.08319v1
- Date: Sat, 17 Sep 2022 12:19:20 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 18:55:57.763408
- Title: On PAC Learning Halfspaces in Non-interactive Local Privacy Model with
Public Unlabeled Data
- Title(参考訳): 公開ラベルデータを用いた非対話型ローカルプライバシーモデルにおけるpac学習半空間について
- Authors: Jinyan Su and Jinhui Xu and Di Wang
- Abstract要約: 非インタラクティブ局所微分モデル(NLDP)におけるPAC学習ハーフスペースの問題について検討する。
本研究は,個人データと公開データの両方において,次元および他の用語でのみ線形なサンプル複素量を実現することができることを示す。
- 参考スコア(独自算出の注目度): 18.820311737806456
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study the problem of PAC learning halfspaces in the
non-interactive local differential privacy model (NLDP). To breach the barrier
of exponential sample complexity, previous results studied a relaxed setting
where the server has access to some additional public but unlabeled data. We
continue in this direction. Specifically, we consider the problem under the
standard setting instead of the large margin setting studied before. Under
different mild assumptions on the underlying data distribution, we propose two
approaches that are based on the Massart noise model and self-supervised
learning and show that it is possible to achieve sample complexities that are
only linear in the dimension and polynomial in other terms for both private and
public data, which significantly improve the previous results. Our methods
could also be used for other private PAC learning problems.
- Abstract(参考訳): 本稿では,非対話型局所微分プライバシーモデル(NLDP)におけるPAC学習ハーフスペースの問題について検討する。
指数的なサンプルの複雑さの障壁を突破するため、以前の結果は、サーバが追加の公開データやラベルなしデータにアクセス可能な緩和された設定を調査した。
私たちはこの方向に進みます。
具体的には,以前検討した大きなマージン設定ではなく,標準設定下での問題を考える。
基礎となるデータ分布について,マッサートノイズモデルと自己教師付き学習に基づく2つのアプローチを提案するとともに,非公開データと公開データの両方において,次元と多項式にのみ線形なサンプル複素性を実現することが可能であり,これまでの結果を大幅に改善できることを示す。
我々の手法は、他のプライベートPAC学習問題にも利用できる。
関連論文リスト
- Towards Split Learning-based Privacy-Preserving Record Linkage [49.1574468325115]
ユーザデータのプライバシが要求されるアプリケーションを容易にするために、Split Learningが導入されている。
本稿では,プライバシ保護記録マッチングのための分割学習の可能性について検討する。
論文 参考訳(メタデータ) (2024-09-02T09:17:05Z) - Empirical Mean and Frequency Estimation Under Heterogeneous Privacy: A Worst-Case Analysis [5.755004576310333]
微分プライバシー(DP)は、現在プライバシーを測定するための金の標準である。
異種プライバシー制約を考慮した一変量データに対する経験的平均推定とカテゴリーデータに対する周波数推定の問題点を考察する。
提案アルゴリズムは,PAC誤差と平均二乗誤差の両面から最適性を証明し,他のベースライン手法よりも優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-15T22:46:02Z) - LLM-based Privacy Data Augmentation Guided by Knowledge Distillation
with a Distribution Tutor for Medical Text Classification [67.92145284679623]
ノイズの多いプライベートディストリビューションをモデル化し,プライバシコストの低いサンプル生成を制御するDPベースのチュータを提案する。
理論的には、モデルのプライバシ保護を分析し、モデルを実証的に検証する。
論文 参考訳(メタデータ) (2024-02-26T11:52:55Z) - Optimal Locally Private Nonparametric Classification with Public Data [2.631955426232593]
本研究では,非パラメトリック分類に着目して,公共データを利用した非対話型局所微分プライベート(LDP)学習の問題点について検討する。
後方ドリフト仮定の下では, LDP制約による最小収束率を導出する。
そこで本研究では,極小最大収束率を達成できる新しい手法である局所微分プライベート分類木を提案する。
論文 参考訳(メタデータ) (2023-11-19T16:35:01Z) - A Unified View of Differentially Private Deep Generative Modeling [60.72161965018005]
プライバシー上の懸念のあるデータには、データアクセスとデータ共有を頻繁に禁止する厳格な規制が伴う。
これらの障害を克服することは、プライバシーに敏感なデータを含む多くの現実世界のアプリケーションシナリオにおいて、技術的進歩の鍵となる。
差分的プライベート(DP)データパブリッシングは、データの衛生化された形式のみを公開する、魅力的なソリューションを提供する。
論文 参考訳(メタデータ) (2023-09-27T14:38:16Z) - PILLAR: How to make semi-private learning more effective [12.292092677396347]
Semi-Supervised Semi-Private (SP)学習では、学習者は公開されていないラベル付きデータとプライベートラベル付きデータの両方にアクセスすることができる。
そこで本研究では,実世界のデータセット上で効率よく動作可能な,プライベートラベル付きサンプルの複雑さを著しく低減する計算効率のよいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-06-06T18:45:05Z) - On Differential Privacy and Adaptive Data Analysis with Bounded Space [76.10334958368618]
差分プライバシーと適応データ分析の2つの関連分野の空間複雑性について検討する。
差分プライバシーで効率的に解くために指数関数的に多くの空間を必要とする問題Pが存在することを示す。
アダプティブデータ分析の研究の行は、アダプティブクエリのシーケンスに応答するのに必要なサンプルの数を理解することに焦点を当てている。
論文 参考訳(メタデータ) (2023-02-11T14:45:31Z) - Learning versus Refutation in Noninteractive Local Differential Privacy [133.80204506727526]
非対話的局所差分プライバシー(LDP)における2つの基本的な統計課題について検討する。
本研究の主な成果は,非対話型LDPプロトコルにおけるPAC学習の複雑さの完全な評価である。
論文 参考訳(メタデータ) (2022-10-26T03:19:24Z) - On Covariate Shift of Latent Confounders in Imitation and Reinforcement
Learning [69.48387059607387]
模擬・強化学習において,未観測の共同設立者と専門家データを併用することの問題点を考察する。
我々は、外部報酬を伴わずに、確立した専門家データから学ぶことの限界を分析する。
我々は,支援医療とレコメンデーションシステムシミュレーションの課題に挑戦する上で,我々の主張を実証的に検証する。
論文 参考訳(メタデータ) (2021-10-13T07:31:31Z) - On the Sample Complexity of Adversarial Multi-Source PAC Learning [46.24794665486056]
単一ソース設定では、トレーニングデータの一定割合を破損させるパワーを持つ相手がPAC学習を防止できる。
意外なことに、マルチソース設定では、敵が任意にデータソースの固定された部分を破壊することができるため、同じことが当てはまらない。
また, 他者とのデータ共有を協調的に行うことで, 悪意のある参加者でも有益であることが示唆された。
論文 参考訳(メタデータ) (2020-02-24T17:19:04Z) - Efficient, Noise-Tolerant, and Private Learning via Boosting [15.62988331732388]
本研究では,大規模ハーフスペースのための耐雑音性とプライベートなPAC学習者を構築する方法について述べる。
この最初の境界は、プライバシからPAC学習者を取得するための一般的な方法論を示している。
2つ目の境界は、大きな有理半空間の微分プライベート学習において最もよく知られたサンプルの複雑さに適合する標準手法を使用する。
論文 参考訳(メタデータ) (2020-02-04T03:16:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。