Experimental benchmarking of quantum state overlap estimation strategies with photonic systems
- URL: http://arxiv.org/abs/2406.06810v4
- Date: Wed, 12 Feb 2025 05:49:05 GMT
- Title: Experimental benchmarking of quantum state overlap estimation strategies with photonic systems
- Authors: Hao Zhan, Ben Wang, Minghao Mi, Jie Xie, Liang Xu, Aonan Zhang, Lijian Zhang,
- Abstract summary: We compare four strategies for overlap estimation using photonic quantum systems.
We encode the quantum states on the polarization and path degrees of freedom of single photons.
We propose an adaptive strategy with optimized precision in full-range overlap estimation.
- Score: 17.062416865186307
- License:
- Abstract: Accurately estimating the overlap between quantum states is a fundamental task in quantum information processing. While various strategies using distinct quantum measurements have been proposed for overlap estimation, the lack of experimental benchmarks on estimation precision limits strategy selection in different situations. Here we compare the performance of four practical strategies for overlap estimation, including tomography-tomography, tomography-projection, Schur collective measurement and optical swap test using photonic quantum systems. We encode the quantum states on the polarization and path degrees of freedom of single photons. The corresponding measurements are performed by photon detection on certain modes following single-photon mode transformation or two-photon interference. We further propose an adaptive strategy with optimized precision in full-range overlap estimation. Our results shed new light on extracting the parameter of interest from quantum systems, prompting the design of efficient quantum protocols.
Related papers
- Photonic Quantum Receiver Attaining the Helstrom Bound [0.9674145073701151]
We propose an efficient decomposition scheme for a quantum receiver that attains the Helstrom bound in the low-photon regime for discriminating binary coherent states.
We account for realistic conditions by examining the impact of photon loss and imperfect photon detection, including the presence of dark counts.
Our scheme motivates testing quantum advantages with cubic-phase gates and designing photonic quantum computers to optimize symbol-by-symbol measurements in optical communication.
arXiv Detail & Related papers (2024-10-29T07:08:39Z) - Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Super-resolution and super-sensitivity of quantum LiDAR with multi-photonic state and binary outcome photon counting measurement [2.2120851074630177]
We are using multi-photonic state (MPS), superposition of four coherent states as the input state and binary outcome parity photon counting measurement.
We found enhancement in resolution and phase sensitivity in comparison to the coherent state and even coherent superposition state based quantum LiDAR.
arXiv Detail & Related papers (2023-09-21T13:46:26Z) - Simulating Gaussian boson sampling quantum computers [68.8204255655161]
We briefly review recent theoretical methods to simulate experimental Gaussian boson sampling networks.
We focus mostly on methods that use phase-space representations of quantum mechanics.
A brief overview of the theory of GBS, recent experiments and other types of methods are also presented.
arXiv Detail & Related papers (2023-08-02T02:03:31Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Experimental quantum reading with photon counting [0.0]
We show that quantum advantage is obtained by practical photon-counting measurements combined with a simple maximum-likelihood decision.
Our experimental findings demonstrate that quantum entanglement and simple optics are able to enhance the readout of digital data.
arXiv Detail & Related papers (2020-04-21T18:00:01Z) - Direct estimation of quantum coherence by collective measurements [54.97898890263183]
We introduce a collective measurement scheme for estimating the amount of coherence in quantum states.
Our scheme outperforms other estimation methods based on tomography or adaptive measurements.
We show that our method is accessible with today's technology by implementing it experimentally with photons.
arXiv Detail & Related papers (2020-01-06T03:50:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.